
AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Master Thesis

Christoph Knecht

September 5, 2014

Advisors: Prof. Dr. Srdjan Capkun, Luka Malisa

Department of Computer Science, ETH Zürich

Abstract

Finding vulnerabilities in embedded devices is not uncommon. The
short life-cycle of these devices and low production costs negatively
affect software quality. In addition, lack of automatic update mecha-
nisms and exploit mitigating techniques leaves these devices virtually
unprotected. In order to create incentive for a manufacturer to fix exist-
ing vulnerabilities, security analysis is needed. However, as embedded
devices are built on custom chips and peripherals, such analysis is chal-
lenging.

In this thesis we introduce AutoHook, a framework for dynamic analy-
sis. Our framework is designed to work with firmware binaries and in
contrast to other approaches, dynamic analysis is not performed using
emulation but on the device itself. AutoHook is used to introduce ad-
ditional functionality, provided in binary format, into existing control
flow of the supplied firmware. The framework supports ARM, MIPS
and Thumb2 instruction sets.

We show that AutoHook helps in the process of reverse engineering a
proprietary embedded operating system and its subsequent security
analysis. Additionally, we show a proof of concept exploit for a discov-
ered vulnerability.

i

Contents

Contents iii

List of Figures v

1 Introduction 1

2 Background 3
2.1 Definitions . 3

2.1.1 Embedded Devices . 3
2.1.2 Firmware . 3
2.1.3 Patching . 4
2.1.4 Static and Dynamic Analysis 4
2.1.5 Taint Tracking . 4
2.1.6 Symbolic Execution . 4

2.2 Related Work . 5

3 The AutoHook Framework 7
3.1 Overview . 7
3.2 Redirecting Execution . 8

3.2.1 Instruction Patching . 8
3.2.2 Pointer Patching . 10

3.3 Memory and Binary Modifications 11
3.3.1 Non-Persistent Patching . 11
3.3.2 Persistent Patching . 12

3.4 Core Components . 12
3.4.1 Assembly Stubs . 12
3.4.2 Configuration Files . 15
3.4.3 Disassembly Engine . 19
3.4.4 Firmware Binaries . 20
3.4.5 Adding new Instruction Sets 20

iii

Contents

3.5 Discussion . 21
3.6 Example Usage . 22
3.7 Obtaining AutoHook . 25

4 Applications 27
4.1 Samsung GT-B3740 USB LTE Stick 27

4.1.1 Debug Access . 28
4.1.2 Boot Procedure . 30
4.1.3 Firmware Update Mechanism 30
4.1.4 Embedded Operating System Analysis 32
4.1.5 Function Tracing with AutoHook 34
4.1.6 Security Analysis . 38
4.1.7 Exploitation . 39

4.2 MIPS Desktop Application . 41

5 Conclusion 43

A Full Listings 45
A.1 Samsung GT-B3740 USB LTE Stick, Firmware B3740BUKA2 . . 45

A.1.1 AutoHook Configuration File 45
A.1.2 Custom Stub: halt hook thumb2 eq.wrap 49
A.1.3 Custom Stub: memcpy.pp 49
A.1.4 Custom Stub: strcat.pp 49
A.1.5 Custom Stub: strcpy.ip 50
A.1.6 Custom Stub: strncpy.ip 50

Bibliography 51

iv

List of Figures

3.1 System model of the AutoHook framework 7
3.2 Redirecting execution from a high-level point of view 9
3.3 Example of instruction patching for ARM assembly 10
3.4 Non-persistent versus persistent patching 11
3.5 MIPS32.pp eq stub . 13
3.6 ARM.hook stub . 14
3.7 Thumb2.ip eq stub . 14
3.8 Halting hook in Thumb2 assembly . 16
3.9 Section adding ARM support in instruction sets.cfg 17
3.10 Example of device / firmware specific configuration file 18
3.11 test.cfg configuration file . 22
3.12 strcpy() redirection . 22
3.13 AutoHook: Partial output in non-persistent patching mode 23
3.14 AutoHook: Partial output in persistent patching mode 24

4.1 Samsung LTE USB stick GT-B3740 . 27
4.2 OpenOCD configuration . 28
4.3 JTAG connector schematics . 29
4.4 Soldered UART pins . 29
4.5 Bootloader output observed over UART 31
4.6 Debugging output after redirecting STDOUT 32
4.7 Abstracted version of a tasks main loop 33
4.8 Heap block datastructure . 34
4.9 Background task hook . 35
4.10 Example log entries within the temporary buffer 36
4.11 MIPS demo application sourcecode . 41
4.12 AutoHook configuration for MIPS demo application 42

v

Acknowledgment

First of all I would like to thank my supervisor Luka Malisa for his continu-
ous and kind support. Thank you for taking your time to discuss problems
and for all the valuable feedback for both the thesis and the defense. Further-
more, I want to thank Prof. Dr. Srdjan Capkun for the opportunity to write
a thesis suitable to my interests. I would also like to thank Ramtin Amin
for his preliminary work on the Samsung LTE USB stick GT-B3740, saving
me a lot of work. Finally, I would like to thank Lorenzo Baesso and Fabian
Aggeler for their company during my masters program and my family for
always supporting me unconditionally.

vii

Chapter 1

Introduction

Embedded devices are ubiquitous nowadays and we rely on them on a daily
basis - be it the board computer in the car or the coffee machine in the office.
Unfortunately, as previous articles discussed, the state of security on such
devices is bad [1, 2, 3]. The lack of automatic firmware update mechanisms,
the short lifecycle of the products and the goal to keep production costs at
a minimum, prevent thorough auditing during development phase and the
distribution of security patches later.

Vulnerable software is problematic on general purpose computers as well,
but methods to mitigate the effect exist: Successful exploitation of vulner-
abilities can be prevented by using antivirus software and the availability
of anti-exploitation techniques such as ASLR [4], DEP and stack canaries [5].
In addition, software audits - e.g. through general debugging [6], taint track-
ing [7] or symbolic execution [8] - and disclosing of the vulnerability create
incentive for the manufacturer to release updated versions of the affected
software.

Motivation

In the world of embedded devices however, these approaches are not fea-
sible. Antivirus software and exploit mitigation techniques rely on power-
ful hardware, whereas embedded devices are designed to have low power
consumption and low production costs. As a result of this, such protec-
tion mechanisms are basically non-existent in embedded operating systems.
Software auditing is challenging due to the nature of the devices:

Compared to general purpose computers which are designed to perform a
broad variety of tasks in a flexible manner, embedded devices are built with
specific tasks in mind. Custom chips and peripherals can solve these tasks
much faster and more efficient. This in turn leads to firmware that is highly
specific to the underlying hardware. Many dynamic analysis tools require

1

1. Introduction

emulation of the binaries under test for instrumentation, but the combina-
tion of a broad variety of hardware platforms, peripherals and embedded
operating systems makes generic emulation unfeasible. Wide distributed
hardware platforms can be emulated, e.g. using QEMU [9], however, when
the software relies on external I/O devices or custom coprocessors, these
applications are limited. Emulators that support a certain device completely
are either closed-source or not released at all, as their main use is for devel-
opment only.

The recently released framework Avatar [10] uses a combination of emu-
lated firmware and I/O redirection to tackle shortcomings of custom copro-
cessors and peripherals. However, when the device’s code has strict timing
constraints, redirecting I/O to an emulator can alter the software’s behavior
and therefore affect the results of the analysis.

One way to solve these problems - besides complete hardware analysis and
development of a custom emulator - is therefore to perform dynamic analy-
sis on the device itself. In order to realize this either the firmware files have
to be modified (custom firmware) or contents in memory have to be patched
- e.g. using JTAG - once the firmware is loaded and ready to be executed.
To our knowledge no tools exist at this point to support dynamic analysis
on embedded devices directly.

Contribution

Our contribution is two-fold. We first introduce AutoHook, a lightweight
framework for dynamic analysis of closed-source binaries. As our frame-
work works on assembly level, no access to source code is required. Auto-
Hook enables researchers to redirect execution flows in a flexible manner to
the target of their choice including external functionality supplied in binary
format. Using these redirection hooks, dynamic analysis can be performed
on the device itself. In the current version AutoHook supports ARM, MIPS
and Thumb2 instruction sets, but additional instruction sets can easily be
added. Applications of our framework include - but are not limited to -
security analysis, performance measurements and general debugging.

Our second contribution consists of reverse engineering a proprietary em-
bedded operating system. In order to show the usability of AutoHook in a
real research scenario, we use the framework to aid in the reverse engineer-
ing process and the subsequent security analysis of the embedded operating
system. During the security analysis, we discovered a critical security vul-
nerability which we reported to the vendor. Additionally, as an exploitation
exercise, we show a proof-of-concept exploit for the found vulnerability in
order to demonstrate that arbitrary code execution is achievable.

2

Chapter 2

Background

2.1 Definitions

Throughout this thesis we will use a variety of special terms, for which we
include a short description in the next few sections.

2.1.1 Embedded Devices

Embedded devices are a combination of microcontrollers and specific hard-
ware that is used to solve specialized tasks, often with real-time constraints.
These devices are ubiquitous nowadays and examples are found in a vari-
ety of applications. Examples of embedded devices - e.g. in a corporate or
governmental environment - include traffic control, climate control, access
control systems and surveillance systems (drones e.g.). Embedded devices
can also be found in the personal environment, including watches, cars, cof-
fee machines, medical devices, printers and network devices such as routers
and access points.

2.1.2 Firmware

IEEE defines the term firmware as the combination of a hardware device
and computer instructions and data that reside as read-only software on
that device [11]. This software is stored in a non-volatile memory device,
e.g. a ROM or EPROM. Nowadays the term firmware is mostly used to
describe the actual contents of a ROM or EPROM. Firmware is typically
used in embedded devices and is heavily tied to the hardware it is running
on. As a consequence of this, firmware is not designed to be replaced by the
end user (only in case of bugfixes or addition of new features).

3

2. Background

2.1.3 Patching

Patching means altering the behavior of software on assembly level, by re-
placing binary contents.

2.1.4 Static and Dynamic Analysis

Static analysis describes the method of studying program source code or
binaries without actually running it. This means that code is analyzed line
by line or instruction by instruction respectively. An advantage of static
analysis is, that by studying all available code, hidden functionality such as
debugging routines or backdoors can be detected. A drawback is that the
behavior of the program has to be characterized without actual user input.
This means that complex interactions of several program components that
in combination could lead to security problems can be missed in a static
analysis.

Dynamic analysis describes the method of studying the behavior of a pro-
gram while executing it with real user input. Software that performs dy-
namic analysis instruments the code under test with additional functionality
that is then used to describe and evaluate the current state of the program
and to model data and code flow paths. Methods such as taint tracking and
symbolic execution are notable example applications of dynamic analysis.

2.1.5 Taint Tracking

Taint tracking - in a nutshell - marks data and tracks its movements during
execution of the target binary. Two types of taint flow are defined:

• Data (explicit) flow: Tainted data is directly passed on by e.g. variable
assignment.

• Control (implicit) flow: Taint propagation is more subtle, tainted data
is not directly involved but e.g. introducing delays or affecting branches
depending on its value.

2.1.6 Symbolic Execution

Symbolic execution describes the method of running software in an ab-
stracted manner: Instead of using real input values, symbolic values are
used. During the analysis of the software, if e.g. a branch is dependent on
a symbolic value, the interpreter tracks all possible execution paths and the
resulting constraints on the symbolic values. A constraint solver can then
be used to derive the actual input that would be necessary to reach a certain
area of code.

4

2.2. Related Work

2.2 Related Work
There are many tools available that perform either static or dynamic analysis.
Most dynamic analysis tools however, rely on emulation and virtualization
techniques. We therefore only describe publications that are closest to what
our framework provides.

Avatar: A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares

Zaddach et al. [10] propose Avatar, a framework designed to help in dy-
namic analysis of embedded devices firmware. Hardware components in
embedded devices, such as peripherals and coprocessors are often custom
made, and the lack of documentation of these components prevents com-
plete and generic emulation of the firmware. Avatar avoids the need of
writing a custom, device specific emulator by using a hybrid emulation ap-
proach: The firmware is run in a generic emulator on the host computer, but
all I/O operations are executed on the original device. As custom periph-
erals are accessed using memory mapped I/O, this approach allows to use
all custom extensions introduced by the manufacturer without actually hav-
ing to reverse engineer them. A big advantage is that tools that instrument
binaries with additional functionality, such as train tracking using emula-
tors, can now be used for proprietary embedded devices firmware. A big
disadvantage however are the delays introduced to the software by using
emulation and I/O redirection. Many embedded device, e.g. baseband
processors, rely on strict timing constraints that have to be met in order to
function properly. If delays are introduced, and the constraints cannot be
met anymore, the functionality of the device will start to differ from the
original behavior, thus affecting analysis results.

In our framework, we address this timing issues by performing dynamic
analysis directly on the device itself.

Embedded Device Firmware Vulnerability Hunting Using FRAK

Cui [12] presented FRAK (the Firmware Reverse Analysis Konsole), a frame-
work developed to help analyzing and modifying firmware binaries. Man-
ufacturers often use custom packaging schemes to distribute their firmware
updates. If a researcher wants to modify such packed images, she first has
to reverse engineer the packaging format, unpack the firmware image, mod-
ify it and repack everything again. This amounts to a very repetitive task
if patches are applied to the firmware frequently. FRAK provides ways
to automate this process by providing modules that allow to automatically
extract, analyze and repack modified firmware binaries. Because of its mod-
ular basis, already reversed packaging schemes can be shared with other

5

2. Background

researchers, saving them time for the analysis of the actual firmware image.
Unfortunately, even though presented in 2012, there has never been a public
release of a whitepaper or sourcecode of FRAK so far. Similar to what FRAK
is supposedly able to do, our framework allows to reuse existing functional-
ity and to easy inject it into the firmware binaries that are parsed.

Dytan: A Generic Dynamic Taint Analysis Framework

Clause et al. [7] proposed Dytan, a platform to instrument binaries with
taint tracking abilities at runtime in a generic way. Previous contributions
in the area of dynamic taint tracking were lacking usability:

• The tools were defined ad-hoc, i.e. for a certain application only

• Most tools considered data flow tracking only

Dytan offers a solution to easily instrument new binaries with the ability
to track both data and control flows. In contrast to Dytan, our framework
is not limited to performing taint tracking, but offers a much more generic
solution to cleanly integrate any analytical functionality into binaries.

S2E: Selective Symbolic Execution

Chipounov et al. [8] presented S2E or Selective Symbolic Execution, a plat-
form that is used to develop tools that e.g. perform reverse engineering
or bug hunting tasks with the help of symbolic execution. As symbolic
execution analyzes all possible execution paths, the amount of data to be
analyzed explodes with increasing binary size. The key contribution behind
S2E therefore is the introduction of selective symbolic execution, which auto-
matically reduces the code to be executed symbolically to a minimum. With
this approach, analysis of large binaries - the paper states it could be used
to evaluate the whole windows stack - becomes feasible.

6

Chapter 3

The AutoHook Framework

3.1 Overview

AutoHook is a platform for redirecting control flow in a flexible, and user-
friendly manner. Flow is redirected to a target of choice, including external
functionality provided as binaries. Our framework will cleanly integrate
the new functionality into the provided firmware binaries, thus enabling
researchers to perform dynamic analysis on the device itself. In the current
version, AutoHook includes support for ARM, MIPS and Thumb2 instruction
sets. Adding new instruction sets can however easily be done (Sections 3.4.3
and 3.5).

AutoHook

Assembly
stubs

Config
files

Disassembly
engine

ELF filesFlat binaries

JTAG commands Custom Firmware

Existing
functionality

(binary)

Figure 3.1: System model of the AutoHook framework

7

3. The AutoHook Framework

In Figure 3.1, the system model of the AutoHook framework is shown from
a high-level point of view. We designed the framework to work with flat
binaries, as most firmware images are supplied in this form. However, we
also added support for ELF files in order for AutoHook to be able to parse
any desktop application as well. Loading of multiple binaries (or ELF files)
is supported, in case the functionality of the device under test is split up
into several parts.

In its core, the framework consists of three major parts: Assembly stubs,
configuration files and a disassembly engine.

The biggest strength of AutoHook is, that it allows to seamlessly integrate
existing functionality - provided in binary format - into the control flow of
the firmware image that is parsed. This means, that you can take C code that
performs taint tracking, compile it to the same architecture as the device that
you are investigating, and AutoHook will inject the functionality and alter the
existing control flow to redirect calls to the newly added routines.

3.2 Redirecting Execution
From a high-level point of view, redirecting execution looks as depicted
in Figure 3.2. After selecting what function to redirect, a wrapper has to
be injected. The location of the wrapper could be any unused part of the
firmware, e.g. debugging symbols that were left and never used. The next
step then is to patch the selected function, in order to redirect execution
flow to the wrapper once the patched location is reached. The wrapper then
performs the following actions:

1. Save the current execution state (as you want to be able to cleanly
resume afterwards)

2. Call the target (this is where execution should be redirected to, could
be any external functionality)

3. Restore the previously saved state

4. Return to the original execution flow

AutoHook allows to perform redirection of execution using two different
methods: Either using pointer patching or instruction patching.

3.2.1 Instruction Patching

When the current hook is configured to use instruction patching, execution
is redirected by replacing instructions, that allow to jump out of the original
execution flow. However, patching instructions on the binary level is not
trivial, as many instructions depend on their position within the binary. If

8

3.2. Redirecting Execution

Function

Wrapper

Patch

Firmware

Target

Figure 3.2: Redirecting execution from a high-level point of view

these instructions are replaced and executed somewhere else, the results can
be completely different:

• Branches are often PC relative and would need to be recalculated if
replaced and executed in the wrapper. Depending on the range of PC
relative addressing and the location of the wrapper, recalculation may
not even be possible.

• Branches occurring before the inserted hook may lead to cases where
the hook is never reached.

• Some instruction sets use PC relative addressing as well for register
loading, leading to similar problems as with PC relative branching.

As the replaced instructions have to be executed at some point in order
to cleanly resume the original flow, we use a blacklisting approach to pre-
vent overwriting of critical instructions. A simple heuristic scans for bad
operands, bad mnemonics (Section 3.4.2) and checks for proper instruction
alignment in order to determine where it is best to place the hooking code.
If a suitable place is found, code to jump to the wrapper is injected. The ac-
tions that the wrapper performs are very similar to the high-level example:

1. Save current execution state

2. Call the target

3. Restore the previously saved state

9

3. The AutoHook Framework

Firmware Binary

0x000000

0x2E2054
0x2E2058
0x2E205C
0x2E2060
0x2E2064

0x5c7140

0x5DAA53

 ...

 TST R0, #3
 PUSH {R4, LR}
 MOV R4, R0
 TSTEQ R1, #3
 BNE #0x28

 ...

 PUSH {R0-R12, LR}
 BL TARGET
 POP {R0-R12, LR}
 TST R0, #3
 PUSH {R4, LR}
 LDR PC, [PC, #-4]
 .word 0x2E205C

 ...

Firmware Binary

0x000000

0x2E2054
0x2E2058
0x2E205C
0x2E2060
0x2E2064

0x5DAA53

 ...

 TST R0, #3
 PUSH {R4, LR}
 MOV R4, R0
 TSTEQ R1, #3
 BNE #0x28

 ...

Firmware Binary

0x000000

0x2E2054
0x2E2058
0x2E205C
0x2E2060
0x2E2064

0x5c7140

0x5DAA53

 ...

 LDR PC, [PC, #-4]
 .word 0x5c7140
 MOV R4, R0
 TSTEQ R1, #3
 BNE #0x28

 ...

 PUSH {R0-R12, LR}
 BL TARGET
 POP {R0-R12, LR}
 TST R0, #3
 PUSH {R4, LR}
 LDR PC, [PC, #-4]
 .word 0x2E205C

 ...

Patch instructions (hooking),
redirect execution flow!③

Inject wrapper code,
including instructions to be
replaced

② Start looking for replaceable
instructions①

Figure 3.3: Example of instruction patching for ARM assembly. The brown marked instructions
in the firmware binary are the ones being overwritten by the hooking code (blue). The wrapper
code executes the overwritten instructions and resumes the original flow after returning from
TARGET.

4. Execute overwritten instructions

5. Jump back into original context

Figure 3.3 illustrates the different steps involved when AutoHook is config-
ured to use instruction patching.

3.2.2 Pointer Patching

If pointer patching is chosen, it is assumed that the function to be redirected
is called using a function pointer, as for instance, is heavily done in C++
programs. AutoHook will replace that pointer to call a wrapper routine. The
actions that the wrapper routine performs differ only marginally from the
mentioned high-level example:

1. Save current execution state

2. Call the target

3. Restore the previously saved state

4. Call the original function

5. Return

10

3.3. Memory and Binary Modifications

3.3 Memory and Binary Modifications

AutoHook is an execution redirecting framework, and it achieves this func-
tionality by either modifying the contents of a firmware image directly, or
its running copy that resides in memory. The framework generates patches
for all redirections and additional functionality, which can then be integrated
into existing control flow using one of two available types of patching - per-
sistent and non-persistent patching.

Memory Layout

Bootloader

General RAM

Operating
System

Patches

Firmware

Code

Data

Patches

(a) (b)

Figure 3.4: Figure (a) shows the memory layout of an embedded device after non-persistent
patching was used, whereas figure (b) shows the altered firmware image after AutoHook was run
in persistent patching mode.

3.3.1 Non-Persistent Patching

Non-persistent patching is the default mode. In this mode, AutoHook as-
sumes that the target has JTAG connectivity available and enabled. As JTAG
allows to peek and poke around in the memory, our framework uses these ca-
pabilities to load all generated patches directly into the copy of the firmware
image that resides in memory. Figure 3.4 (a) shows the final memory layout
of an embedded device, after all patches were loaded using JTAG. On a sub-
sequent boot of the device, a fresh, unaltered copy of the firmware binary
will be loaded into memory, hence the name non-persistent patching is used.
As output, the framework will display instructions to be fed to OpenOCD,
a common opensource tool used for JTAG access.

11

3. The AutoHook Framework

3.3.2 Persistent Patching

In this mode, AutoHook will not integrate the patches into a copy of the
firmware image loaded in memory, but actually alter the original firmware
binary itself. As output, the framework will generate a custom firmware
image that integrates all redirections and added functionality. The final
result is depicted in Figure 3.4 (b). This image can then be flashed onto the
device, which means, that on every boot of the device, the already altered
and patched version of the firmware binary will be loaded, resulting in
persistent patching.

3.4 Core Components
The AutoHook framework consists of three major parts: Assembly stubs, con-
figuration files and disassembly engine.

3.4.1 Assembly Stubs

Assembly stubs are files filled with assembly code and interleaved with
placeholders. AutoHook uses these files as templates for code injection, for
instance for the wrapper routine. Assembly stubs need to be present in or-
der for AutoHook to support a specific instruction set. By using a naming
convention for the files, our framework is able to automatically select the
correct stub file to use, based on the current instruction set and patching
method chosen.

Stub files are located within the stubs/ subdirectory. All files should use a
filename consistent with the name of the instruction set and as file extension
the ones described in the next few paragraphs:

File Extension .pp eq

If the hook being parsed uses pointer patching as hooking method, AutoHook
will select this stub file to be used as the wrapper. The first part of the
file extension (pp) tells AutoHook that it is used for pointer patching. The
second part (eq) tells that the target function (where control flow should be
redirected to) is using the same instruction set as the code being redirected.
This distinction enables hooking of functions within firmware binaries that
use more than one instruction set. For instance in the case of ARM and
Thumb2 instruction sets, the code can switch between these two by setting
or unsetting the least significant bit of the PC register. Figure 3.5 shows
the stub used for pointer patching in case of the MIPS instruction set. By
patching a function pointer, our stub essentially gets called as a function -
meaning that we do not need to care about calculating correct return values.
Besides the TARGET - where the flow will be redirected to - the address of the

12

3.4. Core Components

.text
main:
addi $sp, $sp, -36
sw $s0, 0($sp)
sw $s1, 4($sp)
sw $s2, 8($sp)
sw $s3, 12($sp)
sw $s4, 16($sp)
sw $s5, 20($sp)
sw $s6, 24($sp)
sw $s7, 28($sp)
sw $ra, 32($sp)
jal TARGET
lw $s0, 0($sp)
lw $s1, 4($sp)
lw $s2, 8($sp)
lw $s3, 12($sp)
lw $s4, 16($sp)
lw $s5, 20($sp)
lw $s6, 24($sp)
lw $s7, 28($sp)
addi $sp, $sp, 32
jal REPLACED_STUFF
sw $ra, 0($sp)
addi $sp, $sp, 4
jr $ra

Figure 3.5: MIPS32.pp eq stub. All registers that are either used as function arguments or
defined to be saved by the callee are pushed to the stack before calling the target.

function that would have been called originally, needs to be inserted as well
(placeholder REPLACED STUFF).

File Extension .hook

The idea of the .hook files is to contain the absolute minimum amount of as-
sembly code that is necessary to jump to an arbitrary location within a 32bit
address space. Additionally, no other registers than the PC register should
be involved, in order to be able to resume the execution in the exact same
state after redirecting. These are the instructions that redirect control flow
to the wrapper when a hook is configured to use instruction patching. Fig-
ure 3.6 shows that in the case of the ARM instruction set two instructions are

13

3. The AutoHook Framework

.section .text
_start:
LDR PC, [PC, #-4]
.word WRAP_ADDRESS

Figure 3.6: ARM.hook stub. Only two instructions are necessary to jump to an arbitrary 32bit
address. No registers beside the PC register are affected.

Enable Thumb2
.syntax unified

.section .text
_start:
PUSH {R0 - R12, LR}
BL TARGET
POP {R0 - R12, LR}
REPLACED_STUFF
.align 2
LDR PC, [PC]
.word RETURN_ADDRESS

Figure 3.7: Thumb2.ip eq stub.

sufficient to achieve this goal. The placeholder variables WRAP ADDRESS will
be replaced by the location where the wrapper code is stored (configuration
option wrap loc, Section 3.4.2).

File Extension .ip eq

If the hook being parsed uses instruction patching as hooking method, this
stub file will be used for the wrapper. The first part of the file extension
(ip) tells AutoHook that it is used for instruction patching. The second part
(eq) then tells AutoHook - as mentioned above - that the target function is
using the same instruction set as the code being redirected. In contrast to
pointer patching, where return values are taken care of automatically, these
need to be determined by AutoHook while patching. Additionally, as we use
instruction patching for redirecting the flow of execution, the overwritten
instructions need to be executed before jumping back. Figure 3.7 shows the
stub used for instruction patching in in case of the Thumb2 instruction set.

The TARGET placeholder has the same function as mentioned above in the

14

3.4. Core Components

.pp eq files. The REPLACED STUFF placeholder however is not replaced by a
function address, but by the instructions overwritten by the hooking code.
As the instruction patching method jumps out of the original execution flow
in the middle of a function, a suitable RETURN ADDRESS needs to be calculated
to be able to resume execution after redirection.

File Extensions .pp ne and .ip ne

The files with extensions .pp eq, .hook and .ip eq are mandatory and Au-
toHook relies on them to support a certain instruction set. The files with
extensions .pp ne and .ip ne however are optional. As mentioned above,
there are cases where the instruction set of the code being redirected dif-
fers from where the flow should be redirected to. If this is the case, these
optional files need to be provided.

Custom Stubs

The subdirectory custom stubs/ can be used whenever there is need for
functionality that differs from the default stubs available. AutoHook will not
automatically search for custom stubs, thus no special naming convention is
needed. Instead, the configuration option custom stub (Section 3.4.2) has to
be specified, such that this stub will be used. One example of custom stubs
might be for instance what we call halting hooks. These hooks redirect parts
of code that is only reached whenever a special event happens that is of some
sort of interest. The name halting hook suggests that instead of resuming the
original flow after redirecting the hook will end up in an endless loop.

Custom hooks can (but do not need to) incorporate all placeholders available
in the default stubs. In addition - to make the use of custom stubs more
versatile - custom placeholders named CUSTOM 1 to CUSTOM 9 can be used.
The values to replace with are specified within the hook configuration file
(Section 3.4.2).

Figure 3.8 shows an example of a halting hook written in Thumb2 assembly.
Out of the available default placeholders, only TARGET is used. In this case
we intended to print a message to STDOUT to notify the researcher that some-
thing important happened. In order not to write a different stub for each
place to hook, we made use of the custom placeholders; CUSTOM 1 takes care
of an individual output message, and CUSTOM 2 is used for additional in-
structions, e.g. calling another subroutine. If no additional instructions are
necessary, CUSTOM 2 would be left empty in the configuration file.

3.4.2 Configuration Files
Configuration files are located within the subdirectory cfg/. There is a main
configuration file, called instruction sets.cfg, that has to be available in

15

3. The AutoHook Framework

Enable Thumb2
.syntax unified

.section .rodata
msg: .string "CUSTOM_1 LR: 0x%08x\n"

.section .text
PUSH {R0 - R12, LR}
LDR R0, =msg
MOV R1, LR
BL TARGET // designed to call printf
CUSTOM_2 // additional instructions
POP {R0 - R12, LR}

_end:
B _end

Figure 3.8: Example stub for a halting hook in Thumb2 assembly

order for AutoHook to run.

Main Configuration File: instruction sets.cfg

The sections within this configuration file contain - besides the default stubs
- the necessary information for AutoHook to support a new instruction set.

In Figure 3.9 we show the section of instruction sets.cfg that integrates
ARM support in AutoHook. The name of the section can be chosen arbitrarily
but has to match the filename of stub files. The first five settings specify shell
commands that are used to compile the stubs. As we want to support both
little and big endian encoded binaries, there are two settings for compiler
and linker each. AutoHook produces flat binary patches - therefore a call to
objcopy is necessary to convert the .elf file created by the linker to a flat
binary. The two placeholders ADDRESS and OUTFILE need to be present for
AutoHook to work properly. ADDRESS is used to tell the linker where the bi-
nary will be located in memory - this results in smaller size of the generated
binaries when calls to functions are within the reach of PC relative offset. As
AutoHook relies on Capstone to produce disassembly, the correct architecture
and mode needs to be specified using capstone arch and capstone mode.

While trying to find a suitable place to hook, AutoHook uses the space sep-
arated lists in bad operands and bad mnemonics to skip (and not replace)
potentially critical instructions. In the example of the ARM instruction set
we chose pc as bad operand such that instructions using pc-relative address-

16

3.4. Core Components

[ARM]
compiler_little = arm-none-eabi-as -o /tmp/hook_tmp.o -EL

/tmp/hook_tmp.in
compiler_big = arm-none-eabi-as -o /tmp/hook_tmp.o -EB

/tmp/hook_tmp.in
linker_little = arm-none-eabi-ld -EL -Ttext=ADDRESS -o

/tmp/hook_tmp.elf /tmp/hook_tmp.o 2> /dev/null
linker_big = arm-none-eabi-ld -EB -Ttext=ADDRESS -o

/tmp/hook_tmp.elf /tmp/hook_tmp.o 2> /dev/null
objcopy = arm-none-eabi-objcopy -O binary

/tmp/hook_tmp.elf OUTFILE
capstone_arch = CS_ARCH_ARM
capstone_mode = CS_MODE_ARM
bad_operands = pc
bad_mnemonics = b cb
addr_add = 0
align = 4

Figure 3.9: Section adding ARM support in instruction sets.cfg

ing will not be replaced by our hook. All bad mnemonics mark only the
beginning of disassembled mnemonics, meaning that instructions such as
blx and cbz would be caught as well by our blacklist.

The addr add option allows to specify flags that will be added to a calculated
address. This involves return addresses and addresses to jump to. This way
switching between Thumb2 and ARM instruction set gets possible. In the
case of Thumb2 the option addr add is set to 1.

The last option, align, specifies the byte alignment for instructions, namely
for the hook to be inserted when using instruction patching.

Device / Firmware specific Configuration Files

For each device / firmware configuration that needs to be patched, a re-
searcher should create a new configuration file. Figure 3.10 shows an ex-
ample of a device and firmware specific configuration file. The first section
[DEFAULT] is mandatory. The only mandatory setting in the default section
is endian where endianness is specified as a Capstone constant. Addition-
ally, two optional settings are available:

pre cmds: OpenOCD commands that will be prepended to the automati-
cally generated command list. Can be useful to clear parts of memory
or for manual patching (e.g. we used this to redirect STDOUT to the
UART connection in one of our case studies).

17

3. The AutoHook Framework

[DEFAULT]
endian = CS_MODE_LITTLE_ENDIAN

[undefined_instruction]
patch_method = pointer
source_loc = 0x40000040
source_instr_set = Thumb2
wrap_loc = 0x405C7000
target = 0x401BA018
target_instr_set = Thumb2
custom_stub = halt_hook_thumb2_eq.wrap
CUSTOM_1 = Undefined Instruction!
CUSTOM_2 = BLX 0x405C7300

[background_task]
patch_method = instruction
source_loc = 0x40015C70
source_instr_set = Thumb2
wrap_loc = 0x405C7140
target = 0x405C7300
target_instr_set = ARM
target_binary = compress.bin

Figure 3.10: Example of device / firmware specific configuration file

post cmds: Same as pre cmds but supplied commands will be appended to
the generated list.

When run in persistent patching mode, AutoHook is able to use some of these
additional OpenOCD commands as well. The mwb, mwh, mww and load image
(flat binaries only) commands are supported and the changes are written
directly into the produced custom firmware.

All other sections are optional, one for each hook to be placed. The name of
a hook section can be chosen arbitrarily, but it will be used for newly created
binaries and various output by AutoHook messages and should therefore be
chosen carefully.

A hook section contains several mandatory settings:

patch method: Can either be set to instruction (if existing code should
be patched to redirect execution flow), or to pointer if patching of a
function pointer is required.

source loc: Specifies the location in memory where AutoHook should start

18

3.4. Core Components

looking for instructions to replace (instruction patching) or where the
function pointer is located (pointer patching).

source instr set: Specifies what type of instruction set is used in the code
being redirected. Determines what kind of instruction set the stubs
will be compiled to as well.

wrap loc: Position in memory where the newly created wrapper should be
loaded to (or written to when persistent patching is enabled)

target: Address that will replace the TARGET placeholder in the stubs (Fig-
ures 3.5, 3.7 and 3.8 for examples).

target instr set: Most of the time this will be set to the same value as
source instr set, can however differ if one wants to e.g. switch from
ARM to Thumb2 instruction set.

In addition to these mandatory settings, several optional ones exist as well:

target binary: If TARGET points to code that is not part of the original
firmware binary, the binary containing the code can be specified. Au-
toHook will generate an additional load instruction for this binary if it
is run in non-persistent patching mode. In persistent patching mode,
the external binary will be injected into the custom firmware as all
other patches. Target binaries are assumed to be flat, ELF loading is
not supported.

custom stub: If specified, AutoHook will not automatically determine what
stub to use (based on patching method and instruction sets) but in-
stead use the specified file. Custom stubs need to be located in the
custom stubs/ subdirectory.

CUSTOM 1 - CUSTOM 9: These settings allow arbitrary replacements in custom
stubs.

force patch: Boolean value, optional. If set to true, AutoHook will patch
hooking instructions at the next aligned address starting from source loc,
ignoring conflicts issued by either bad operands or bad mnemonics.
This is useful if no suitable location can be found and either a cus-
tom stub will take care of the problem or one does not expect the hook
to return at all (e.g. halting hooks).

3.4.3 Disassembly Engine

Whenever instruction patching is used, AutoHook has to disassemble the
points of interest in order to find a suitable place to hook. We rely on
the Capstone disassembly framework to provide decoded instructions. Cap-
stone is implemented in pure C and provides bindings for several different

19

3. The AutoHook Framework

programming languages, including Python. Many different architectures
and modes are supported:

• ARM

• ARM-64

• Intel

• MIPS

• PowerPC

• Sparc

• SystemZ

• XCore

For a complete list of supported modes and architectures see the frame-
work’s website [13].

3.4.4 Firmware Binaries
Besides a suitable disassembler, AutoHook also needs access to the original
firmware binaries. Multiple firmware binaries can be supplied - in case the
functionality of the device under test is split up into several parts. Two type
of binaries are supported: Flat binaries, and ELF files. If flat binaries are
supplied, both the filename and the loading address have to be provided
in pairs. In case that ELF files are supplied, the filename is sufficient as
the loading address can be determined automatically. However, there are
certain restrictions when working with ELF files:

• PIE (relocatable .text segment) is not supported

• Stripped ELF files are not supported

• Analysis and patching is only available for the .text segment

3.4.5 Adding new Instruction Sets
AutoHook can easily be extended to support any instruction set as long as it is
supported by Capstone. The following paragraphs show the steps necessary
in order to successfully add support for a new instruction set.

GCC Toolchain and Binutils

All stubs need to be compiled and converted to flat binaries before either
loading them in OpenOCD or integrating them into the original firmware.
For compilation and linking the GCC toolchain for the new instruction set
needs to be available. The binutils (for this specific instruction set as well)
need to be present to convert the compiled ELF file in to a flat binary.

20

3.5. Discussion

New Section in instruction sets.cfg

Similar to Figure 3.9 a new section needs to be added to the main configura-
tion file instruction sets.cfg. See Section 3.4.2 for details on the configu-
ration settings.

Create Stubs

Assuming new section was named NAME, at least the following files need to
be created in the subdirectory stubs/:

• NAME.hook

• NAME.ip eq

• NAME.pp eq

See Section 3.4.1 for details on what placeholders need to be present.

3.5 Discussion
The AutoHook framework allows to redirect control flow in a very flexible
manner to a target of choice using simple configuration files. What this
means is, that AutoHook allows a researcher to save time, as creating a con-
figuration file is all that needs to be done in order to instrument a firmware
binary with new functionality. Assume a researcher does not have AutoHook.
In order to achieve redirection of execution flow manually, the following
steps would need to be performed:

1. Search for a suitable place to start redirecting.

2. Generate and inject assembly code that performs the actual redirection.

3. Edit patches to reflect the replaced instructions and all references to
the location in memory where the wrapper will reside.

4. Compile and inject the patches.

Additionally, whenever a new firmware revision is released, one has to start
with this process all over again. Using AutoHook however, this process is
reduced to just one step - creating a configuration file. In order to support
new firmware revisions, all that has to be done is to adjust that configuration
file.

AutoHook is designed to be very flexible. It leaves the researcher with com-
plete freedom of choice on what kind of functionality should be added. Fur-
thermore, adding support for new instructions sets is a one time procedure,
which only consists of altering a configuration file and creating three assem-
bly stubs.

21

3. The AutoHook Framework

[DEFAULT]
endian = CS_MODE_LITTLE_ENDIAN

[strcpy]
source_loc = 0x40015C70
source_instr_set = Thumb2
patch_method = instruction
wrap_loc = 0x405C7140
target = 0x405C7300
target_instr_set = ARM
target_binary = function.bin

Figure 3.11: test.cfg configuration file, containing only one hook, that redirects strcpy() to
functionality loaded from function.bin

Function
strcpy()

Wrapper

Patch

Firmware

Target
function.bin

Figure 3.12: Abstracted view of a redirection from strcpy() to custom functionality loaded
from function.bin

3.6 Example Usage

If a researcher wants to redirect calls to strcpy() to its taint tracking routine
residing in function.bin, all she needs to do is to create the configuration file
shown in Figure 3.11.

Figure 3.12 shows the resulting, abstracted version, of the new execution
flow that AutoHook generated using the test configuration file. This is achieved

22

3.6. Example Usage

...

[strcpy] Start parsing
[strcpy] Going for instruction patching.
[strcpy] Writing binary to bin/strcpy_hook.bin
[strcpy] Will replace the following instructions (*):
[strcpy] * 0x40015c70: movs r3, #1
[strcpy] * 0x40015c72: add r2, sp, #4
[strcpy] * 0x40015c74: mov r0, r3
[strcpy] * 0x40015c76: add r1, sp, #8
[strcpy] 0x40015c78: bl #0xbf010
[strcpy] 0x40015c7c: cmp r0, #0
[strcpy] Writing binary to bin/strcpy_wrap.bin
[strcpy] Wrapper binary is 28 bytes. Make sure the

specified wrap_loc provides enough space.

All done! Please copy all binary files from the bin
directory (and - if specified - target binaries as
well) to your OpenOCD working dir! Then paste the
following commands into your OpenOCD shell:

load_image strcpy_hook.bin 0x40015c70 bin
load_image strcpy_wrap.bin 0x405c7140 bin
load_image function.bin 0x405c7300 bin

Figure 3.13: AutoHook: Partial output in non-persistent patching mode using the test.cfg
configuration file

by starting AutoHook with the following command:

$./AutoHook.py cfg/test.cfg B3740BUKA2.mac 0x40000000

The first argument is the device / firmware configuration. Following this,
arguments need to be supplied either in pairs consisting of the name of the
firmware binary and the address where the binary would be mapped to
in memory (flat binaries) or the filenames only if ELF files are used. Fig-
ure 3.13 shows parts of the output produced by AutoHook when started
with the command mentioned above. It starts parsing the provided con-
figuration file (test.cfg) for hooks that should be applied. In this example
the only hook present is configured to use instruction patching. If a hook
uses instruction patching, AutoHook will display the instructions that were
replaced during the patch process (marked with at star). After all hooks are
parsed and patches are generated, AutoHook shows the commands to be fed
to OpenOCD.

23

3. The AutoHook Framework

...

[strcpy] Start parsing
[strcpy] Going for instruction patching.
[strcpy] Writing binary to bin/strcpy_hook.bin
[strcpy] Will replace the following instructions (*):
[strcpy] * 0x40015c70: movs r3, #1
[strcpy] * 0x40015c72: add r2, sp, #4
[strcpy] * 0x40015c74: mov r0, r3
[strcpy] * 0x40015c76: add r1, sp, #8
[strcpy] 0x40015c78: bl #0xbf010
[strcpy] 0x40015c7c: cmp r0, #0
[strcpy] Writing binary to bin/strcpy_wrap.bin
[strcpy] Wrapper binary is 28 bytes. Make sure the

specified wrap_loc provides enough space.

Start patching firmware binaries...

[B3740BUKA2.mac] Offset 0x00015c70: Incorporating binary
bin/strcpy_hook.bin

[B3740BUKA2.mac] Offset 0x005c7140: Incorporating binary
bin/strcpy_wrap.bin

[B3740BUKA2.mac] Offset 0x005c7300: Incorporating binary
bin/function.bin

[B3740BUKA2.mac] Patched firmware file written to
bin/patched_B3740BUKA2.mac

Figure 3.14: AutoHook: Partial output in persistent patching mode using the test.cfg config-
uration file

By specifying -p DIR in front of the configuration file parameter AutoHook
switches to persistent patching mode:

$./AutoHook.py -p bin cfg/test.cfg B3740BUKA2.mac 0x40000000

Figure 3.14 shows parts of the generated output when the framework is run
in persistent patching mode. Instead of OpenOCD commands at the bottom,
AutoHook shows the offsets within the firmware binaries that were patched.

24

3.7. Obtaining AutoHook

3.7 Obtaining AutoHook
This PDF document contains a ZIP archive within itself:

$ unzip AutoHook.pdf

Thanks to Ange Albertini for the instructions on how to cleanly integrate a
ZIP file [14].

25

Chapter 4

Applications

We show that our framework helps in reverse engineering and performing
security analysis of a real-world embedded device. We additionally show
that the concept of AutoHook works equally well on a desktop application
for a different architecture.

4.1 Samsung GT-B3740 USB LTE Stick

The Samsung LTE USB Stick GT-B3740 (Figure 4.1) enables PC users to es-
tablish a data connection using the LTE cellular Network (4G). The stick is
manufactured by Samsung and distributed by Vodafone. As the GT-B3740
is a LTE only device, it cannot be used in areas where only GSM/EDGE
or UMTS/HSPA is available. Furthermore, only the LTE 800 MHz band is
supported, thus limiting the connectivity in Switzerland as the 800 MHz
Support just started to roll out. The baseband processor in the device is
the CMC220, designed and manufactured by Samsung, based on a ARM

Figure 4.1: Samsung LTE USB stick GT-B3740
Source: http://www.teamsix.it/cms/product images/45/38/09/LTE-Surf 241088.jpg

27

4. Applications

reset_config trst_and_srst

if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME

} else {
set _CHIPNAME cmc220

}

if { [info exists ENDIAN] } {
set _ENDIAN $ENDIAN

} else {
set _ENDIAN little

}

if { [info exists DAP_TAPID] } {
set _DAP_TAPID $DAP_TAPID

} else {
set _DAP_TAPID 0x4ba00477

}

jtag newtap $_CHIPNAME dap -irlen 4 -ircapture 0x1 -irmask
0xf -expected-id $_DAP_TAPID

set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME cortex_r4 -chain-position

$_CHIPNAME.dap -dbgbase 0x8000c000

Figure 4.2: OpenOCD configuration file for Samsung LTE USB stick GT-B3740

Cortex-R4 processor.

4.1.1 Debug Access

A blog post from P1 Security [15] showed that debug access to the device is
easily achieved: The JTAG connector was labeled with JTAG, due to a leaked
service manual the pinout was known and an appropriate JTAG connector
is available for purchase online. In order to get the JTAG access working
we had to tweak the original OpenOCD configuration presented in the blog
post (Figure 4.2).

When having a closer look at the pinout of the JTAG connector (Figure 4.3)
it can be seen that two pins refer to UART connection. Unfortunately the
acquired adapter for the connector did not provide access to these pins -
only the JTAG relevant pins were mapped. With - a lot of - try and error we

28

4.1. Samsung GT-B3740 USB LTE Stick

managed to solder two wires without breaking the possibility to attach the
acquired cable to the connector. The result is shown in Figure 4.4.

D
40

4

10
05

LX
ES

15
AA

A1
-0

75

VDD_1.8V

N
C

13 14
N

C
N

C
15 16

N
C

2 2
3 3 4 4
5 5 6 6

7 7 8 8
99

HDC401

1 1

10 10
11 11 1212

VDD_1.8V VBUS_5.0V

R400

R402

UART0_RX

CMC_TDO
RESET_IN

UART0_TX

CMC_TRSTN
CMC_TDI

CMC_TMS
CMC_TCK

Figure 4.3: Schematics of the JTAG connector used on the Samsung LTE USB stick GT-B3740
Source: P1 Security [15]

Figure 4.4: Soldered wires to UART pins on the JTAG connector of the Samsung LTE USB
stick GT-B3740

29

4. Applications

4.1.2 Boot Procedure

With UART connection working, output of the bootloader helped to get a
first grasp of what kind of system the stick is running. Figure 4.5 shows the
output of the bootloader on stock firmware. The output shows four different
entries in the system information listing:

• Boot

• Loader

• MAC1

• MAC2

Boot and loader together make up the bootloader that loads the operating
system image and takes care of firmware updating procedures. MAC1 spec-
ifies the operating system image and MAC2 a fallback image.

In order to start the analysis of the embedded operating system, copies of
all the system’s parts needed to be obtained. We downloaded a firmware
update and extracted the firmware image (MAC1) out of it. As the firmware
update did not contain updates for either the boot or the loader part of the
system, we had to extract their copies from the running device using JTAG.

4.1.3 Firmware Update Mechanism

The official firmware update tool features several switches that can be used
to flash all previously mentioned parts of the system.

-b *.but: Flash a new Boot image.

-l *.ldr: Flash a new Loader image.

-m1 *.mac: Flash a new OS image to MAC1.

-m2 *.mac: Flash a new OS image to MAC2.

-i *.iso: Flash a new ISO-image. The ISO-image provides the manage-
ment software and is automatically loaded when no specific driver is
(yet) installed on the host computer.

The firmware images are neither signed nor encrypted, thus allowing down-
grading and flashing of custom firmwares without the need of further patches
or exploitation. An example upgrade procedure (taken from the latest up-
date available) looks as follows:

C:\> GT-B3740 FWUp.exe -m1 B3740 LTE.mac -i CdRom.iso

30

4.1. Samsung GT-B3740 USB LTE Stick

<< Boot Loader Running!!>>

+-------------------------------------+
| CMC220 Boot 1G |
| BOOT for LOADER1 |
| S/W Version 1.0.5.0 |
| DVS_SEL,Version info,UART0 |
+-------------------------------------+

<< Loader1 Code Down Done!!>>

================================
System Information

Boot : 1.00.05 (Mar 24 2010)
Loader : 1.00.07 (May 6 2010)
MAC1 : B3740BUKA2 (Jan 27 2011)
MAC2 : Unknown (Unknown)

================================

CMC2XX Firmware XSR [May 6 2010]
================================

Current Boot mode is : Run CMC2XX MAC App mode !!
... Auto boot Start !!

MAC Binary size = 0x5c6a54

Run MAC Image

Figure 4.5: Bootloader output observed over UART

31

4. Applications

===
CMC220 DEVELOPMENT PLATFORM

- ARM Emulation Baseboard | Cortex-R4

- Software Build Date : 27/01/2011_15:05:10
- Software Builder : yd.lim
- Compiler Version : ARM RVCT 3.1 [Build 700]

Platform Abstraction Layer (PAL) Powered by
Modem H/W Lab BSP SW Part

===

Figure 4.6: Debugging output after redirecting STDOUT

4.1.4 Embedded Operating System Analysis

Analysis of the firmware binary revealed that the operating system is a pro-
prietary, multitasking system. The operating system does not implement
pre-emptive scheduling, meaning that tasks run to completion before execu-
tion is passed on. Additionally, the system is a monolithic operating system,
which means that there is no separation between tasks - all of them share
the same memory space. As all tasks run in the highest available processing
mode - the Supervisor mode - a bug in any task can lead to the compromi-
sation of the whole operating system.

Reverse engineering of the bootloader showed that the MAC image chosen
to run is loaded to 0x40000000 in memory. A total of 16 megabytes of RAM
(addresses 0x40000000 - 0x40FFFFFF) is reserved for the OS (MAC) image
to be loaded to. The memory starting at 0x41000000 up to 0x43FFFFFF is
reserved for stack and heap usage. After the bootloader passes execution to
the OS image, the stack and heap get initialized and the mainTask is started.
The mainTask then takes care of further startup procedures, namely reading
and parsing configuration files and starting all other necessary tasks.

With the correct load address, IDA Pro is quickly able to find many refer-
ences to strings, thus revealing the printf() function immediately. As the
firmware is neither signed nor encrypted, we wrote a quick patch to redi-
rect STDOUT to our UART connection. This provided plenty of additional
debugging information. Figure 4.6 shows some of the new debugging out-
put revealing the used compiler version.

In this case, ARM RVCT 3.1 [Build 700] was used. As IDA Pro has signa-
tures for exactly this version of the libraries used, we could quickly identify
interesting functionality that helped with further analysis.

32

4.1. Samsung GT-B3740 USB LTE Stick

Task main entry

pal_MsgReceiveMbx()

Task related actions

Figure 4.7: Abstracted version of a tasks main loop

Inter Task Communication

Communication between tasks (inter task communication) is realized with
a message sending mechanism. Every task has its own mailbox and it con-
stantly checks whether there are new messages available. Figure 4.7 shows
an abstracted version of a tasks main loop. After handling a received mes-
sage, the task returns again to call pal MsgReceiveMbx(). At this point
execution can be passed on to another task waiting in line.

Heap Implementation

In this section we describe the details of the custom heap implementation.
Figure 4.8 shows the structure of a heap block. The individual fields are
summarized as follows:

MAGIC: Marks the start of a heap block.

Type: There are several types of blocks available, most of them being type
0x4. The difference in type relate to different heap regions in memory
and therefore different lists.

Size: Specifies the size of the data (including MAGIC end marker) following
the header.

Allocating Source File / Line: For debugging reasons, all heap blocks con-
tain a pointer to a string specifying in what part of the original source-
code the allocation was performed. Very useful for reverse engineering
purposes.

Pointer to Datastructure / Offsets: These three fields are used to update the
free / allocated datastructure.

XOR Checksum Serves as integrity check. All previous mentioned fields
(starting with the size field) are XORed and the result stored here.

Data: Here starts the actual content of the heap block.

MAGIC: Marks the end of a heap block.

33

4. Applications

Heap Block

D’OH

0x00000004

0x00000010

D’OH

0x41414141

0x41414141

0x41414141

D’OH

MAGIC

Type

Size (incl. MAGIC at the End)

Allocating Source File

Line within that File

Pointer to Datastructure

Offset within this Structure 1

Offset within this Structure 2

DATA

...

...

MAGIC

XOR Checksum

XOR Checksum

Figure 4.8: Heap block datastructure

Upon freeing of a block several checks are performed:

1. Is the type a valid number?

2. Is there a MAGIC marking at the end of the block?

3. Is the XOR checksum valid?

If these checks are valid, the corresponding datastructure is updated to mark
the block as freed. Surprisingly, only the check for a valid type raises an
error if failed - the other two tests just exit the free() function prematurely
without returning any error.

4.1.5 Function Tracing with AutoHook

When an embedded device is fuzzed and crashes occur, no coredump is
written automatically. In order to evaluate calls to interesting functions we
developed a function tracing routine. We use AutoHook to redirect functions
of interest to our function tracer and to automatically download the gathered
information to the host computer whenever a crash is detected.

All sourcecode relating to this section (client side programs and all device
related code) is attached to this PDF.

34

4.1. Samsung GT-B3740 USB LTE Stick

Compression Routine

The compression routine is the main driver of the logging functionality on
the device. As we want the routine to run periodically (interval depends
on how fast the logging buffer tends to fill up), the place to hook needs to
be called frequently as well. Hooking the background task of the operating
system proved to be a good solution for this. Figure 4.9 shows the hook that
redirects execution within the background task to the compression routine.
If more frequent runs of the compression routine would be needed, one
could just add another hook to use a task that gets used more frequently.

[background_task]
patch_method = instruction
source_loc = 0x40015C70
source_instr_set = Thumb2
wrap_loc = 0x405C7140
target = 0x405C7300
target_instr_set = ARM
target_binary = compress.bin

Figure 4.9: Background task hook. AutoHook is instructed to generate load commands for the
compression routine as well.

On the first run, the routine takes care of allocating the necessary space
for a temporary logging buffer and enables logging. On every subsequent
start, the routine checks if the size of the logs in the temporary buffer is
bigger than a configurable threshold. If this is the case, the data within the
temporary buffer is compressed using QuickLZ [16] and then copied to the
final buffer. In our implementation, the final buffer is located in a unused
part in the RAM in order to minimize the effect to the system under test.

Function Hooks and Logging Routine

In our implementation we were interested in calls to memcpy(), strcat(),
strcpy() and strncpy(), as being able to control input to these functions
often results in buffer overflows. Before a captured call is forwarded to the
logging routine, we have to set up the arguments: These include the value
of the return address (the link register) to see where the call originated from,
the original function arguments, the content to be copied and a marker that
later helps determining what redirected function was called. Due to these
special requirements we could not use generic wrapper stubs but had to
write custom ones. See Appendices A.1.3 to A.1.6 for the detailed listings.

All four custom stubs use the logging procedure as target. The logging

35

4. Applications

39 88 1b 40 6d 65 6d 63 90 cc 63 42 20 7b db 42 00 01 00 00 . . .

Link Register
(0x401b8839)

Type
(memcpy)

Destination
(0x4263cc90)

Source
(0x42db7b20)

Size
(0x100)

Data

.

. . .

. . . 49 78 2b 40 73 74 72 6e 50 42 6e 42 a0 db 65 42 27 00 00 00

Link Register
(0x402b7849)

Type
(strncpy)

Destination
(0x426e4250)

Source
(0x4265dba0)

Size
(0x27)

.

. . .

Data

Figure 4.10: Example log entries within the temporary buffer

procedure saves all information in the temporary buffer that was allocated
by the compression routine as mentioned previously. Figure 4.10 shows
example entries within the temporary buffer. If the buffer is not emptied
quickly enough by the compression routine, and tries to overflow, logging is
suspended temporarily and a warning message is printed to STDOUT.

Halting Hooks

As mentioned in Section 3.4.1, we call hooks that end up in an endless
loop instead of resuming the original flow after redirecting halting hooks.
To aid the analysis and notify the researcher if a crash occurred, we used
the halting hook shown in Figure 3.8 to capture interesting (security related)
events. These included:

Undefined Instruction Handler: This would be triggered if a bug allowed
to somehow control the PC register, or if parts of memory where exe-
cutable code resides would be overwritten.

Software Interrupt Handler: The operating system issues a software inter-
rupt whenever an unrecoverable error happens (e.g. failed type check
in free()).

Data / Prefetch Abort Handlers: This would be triggered if a bug allowed
to control some register values that would point to an invalid location
in memory.

MAGIC Check in free(): As mentioned previously, the operating system
checks if the heap footer is corrupted, but continues to run without
any errors. We hook the part where this check fails in order to detect
heap overflows.

As our halting hook stub is designed to have custom instructions inserted, we
can - after printing what happened - issue a call to the compression routine

36

4.1. Samsung GT-B3740 USB LTE Stick

and start downloading the log file before going into the endless loop.

Client Side Programs

We wrote client side programs to help analyzing the compressed log files.
The receiver.py script listens on the UART connection and prints out mes-
sages received. When a downloading marker is received, the compressed
log file is retrieved automatically. The decompress tool performs the extrac-
tion of the compressed logs using QuickLZ. Finally, the analyze.py script
analyzes the contents of the logged function traces.

The default way to call the analyze.py script is to not specify anything but
the decompressed dump file as parameter. In this case everything that has
been logged will be displayed as a list of pseudo function calls:

$./analyze.py out.bin

ID: 00000001 memcpy(0x4263cc90, 0x42db7b77, 0x1) LR: 0x401b8839
ID: 00000002 memcpy(0x4263cc90, 0x42db7b77, 0x1) LR: 0x401b8839
ID: 00000003 memcpy(0x4263cc90, 0x42db7b77, 0x1) LR: 0x401b8839
ID: 00000004 memcpy(0x4263cc90, 0x42db7b77, 0x1) LR: 0x401b8839
...
ID: 00056344 memcpy(0x425f7b68, 0x41da6510, 0xa) LR: 0x40283579
ID: 00056345 memcpy(0x425e7c4c, 0x4159f334, 0x18) LR: 0x40010b25

#memcpy: 54968
#strcpy: 1376
#strncpy: 1

The ID field is used internally to identify the logged entries. If the switch
-x followed by an ID is detected, the selected function call is displayed in
verbose mode. This includes, besides the reconstructed arguments and link
register, a hexdump of the contents of the buffer that was copied:

$./analyze.py -x 00044585 out.bin

ID: 00044585 memcpy(0x426e9fa0, 0x426e86a8, 0x41) LR: 0x4023d60b

Hexdump:

00000000: 37 d4 11 4a a0 00 07 5d 02 00 04 e0 60 c0 40 c1
00000010: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
00000020: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
00000030: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
00000040: 41 00 00 00

37

4. Applications

By specifying a four char (hex encoded) argument following the uncom-
pressed log file, the script only displays calls that either match the filter in
one of the arguments, or in the logged content:

$./analyze.py out.bin 41414141

ID: 00044585 memcpy(0x426e9fa0, 0x426e86a8, 0x41) LR: 0x4023d60b
ID: 00044587 memcpy(0x426e9b20, 0x426e9fa0, 0x41) LR: 0x4010ef33
ID: 00044589 memcpy(0x42353eb4, 0x4235492f, 0x3f0) LR: 0x40186f43
ID: 00044602 memcpy(0x42353eb4, 0x4235492f, 0x3f0) LR: 0x40186f43
...
ID: 00056325 memcpy(0x42353eb4, 0x4235492f, 0x3f0) LR: 0x40186f43
ID: 00056332 memcpy(0x42353eb4, 0x4235492f, 0x3f0) LR: 0x40186f43

#memcpy: 54968
#strcpy: 1376
#strncpy: 1

The ID used in the example of a verbose output is therefore listed as well in
the filtered output. If both the filter and the examine switch are specified,
the filtered chars are highlighted in the output hexdump.

Custom Firmware

We used AutoHook to produce a custom firmware binary, patched with the
mentioned hooks and compression / logging routines. Furthermore, we
made use of the possibility to specify manual patches (post cmds setting,
see Appendix A.1.1, line 5) to integrate the previously mentioned patches
that redirect STDOUT to UART. See Appendix A.1 for a full listing of the used
configuration file and all involved custom stubs.

4.1.6 Security Analysis
The custom firmware generated by AutoHook allowed capture and trace back
of vulnerabilities. If a stack or heap overflow would happen, one of the in-
troduced halting hooks would be executed, notifying the event and retrieving
the log file. The logged data could then used to trace back the origins of the
occurred overflow.

AT Commands

Playing with the AT Commands parser, our custom firmware quickly discov-
ered a heap overflow vulnerability. When using the AT command AT+CMGS
(sending SMS) and then specifying an SMS text of 400 capital letters “A”,
the UART output would display:

38

4.1. Samsung GT-B3740 USB LTE Stick

Heap corruption! LR: 0x400a1511

The logs were automatically downloaded and inspection revealed poten-
tially dangerous calls to strcpy() and strcat():

$./analyze.py out.bin 41414141

ID: 00002611 memcpy(0x4264db98, 0x43432f84, 0x190) LR: 0x4022b919
ID: 00003459 strcpy(0x426eac20, 0x426db020) LR: 0x40185e73
ID: 00003473 strcpy(0x426db020, 0x426eac20) LR: 0x401867e9
ID: 00003474 strcat(0x42da89e2, 0x426db020) LR: 0x400a14ef

#memcpy: 2133
#strcat: 1087
#strcpy: 254
#strncpy: 0

Having a closer look at the piece of code responsible for this overflow
revealed, that the CMGS command copies the content of the SMS using
strcpy() into a fixed size block allocated on the heap. We contacted the
Samsung security team and reported the found vulnerability.

4.1.7 Exploitation
As an exercise in exploit development we were curious whether arbitrary
code execution could be achieved using the discovered vulnerability.

Abusing free()

In the classic example of a heap overflow, the overflow is used to change
the header values of the subsequent heap block. If the block following the
one to be freed is marked as unused (free), free() will try to merge the two
buffers in order to prevent fragmentation of memory. In order to manage
this, the double linked list addressing the heap blocks needs to be adjusted.
With careful choosing of the new (overflowed) heap header one achieves
arbitrary write of four bytes (in case of 32 bit pointers).

Unfortunately - from the attacker’s point of view - the implementation of
free() in the operating system of the Samsung GT-B3740 USB LTE Stick
does not perform merging. With careful choosing of header values, it is
possible to perform an arbitrary write of 4 bytes, but this only works if the
buffer with the changed header is freed itself. Exploitation of this heap
overflow is therefore not straightforward, as a call to free() for the buffer
corresponding to a header under the control of the attacker needs to be
triggered. Additional restrictions on the payload makes this task even more
complex:

39

4. Applications

• Payload size is limited to 1022 bytes

• All non-alpha-numeric characters are ignored

Due to these limitations, construction of a valid heap header is not possible
with the mentioned overflow as the check for valid type would fail if the field
contains only alpha-numeric characters. The only solution left is to overflow
as much memory as possible in the hope of influencing data used by another
task that could be leveraged for exploitation. However, 1022 bytes of payload
turned out not to be enough to overwrite something usable. Thanks to the
way free() behaves when failing the test that checks for a valid heap footer
(just exit without raising an error), it is possible to perform heap spraying
by deliberately leaving the footer in an invalid state. As the buffer is never
freed, subsequent calls to the vulnerable function allocate new buffers at
different points in memory. Using this technique, we continue overwriting
memory until something “useful” can be influenced.

Proof-of-Concept Exploit

We use the heap spraying technique just mentioned to fill the memory up
with pointers. At one point, a flushing routine is triggered by the operat-
ing system. During this routine, heap blocks get freed and the pointers to
these lay in a heap block themselves. When our heap spraying reaches this
buffer, we gain complete control of a pointer passed to free(). The steps
for successful exploitation are now the following:

1. Flood memory with pointers only made up of alpha-numeric charac-
ters (payload restriction!)

2. Set fake heap header up at the location pointed to (gain arbitrary write
of 4 bytes)

3. Jump into shellcode

The biggest challenge was finding a place in memory having an address
consisting only of alpha-numeric bytes and where unfiltered user supplied
input would be copied to. Memory dumping, analysis and further reverse
engineering showed that indeed there exists a location in memory that suits
all these restrictions: 0x43433420.

The success of the final, working exploit is dependent on the speed of the
USB initialization and mode switching of the host computer, and did there-
fore not succeed on all our testing machines. Depending on the speed, the
flushing routines buffer is set up at a lower memory region due to schedul-
ing, preventing the exploit from overflowing the pointer later passed to
free(). Additional reverse engineering would be necessary to make the
exploit more stable.

40

4.2. MIPS Desktop Application

4.2 MIPS Desktop Application
As mentioned in Section 3.4, AutoHook can be extended to support many
different instruction sets. We show an additional demo application of our
framework on a MIPS ELF binary. Figure 4.11 shows the very simple MIPS
demo application.

#include <stdio.h>

int main(void){
printf("Hello World!\n");
return 0;

}

Figure 4.11: MIPS demo application sourcecode

Compiled statically, the binary can be run in an emulated user environment
with qemu-user-static:

$ qemu-mipsel-static test

Hello World!

Figure 4.12 shows the configuration file that is fed to AutoHook to produce
the patched binary. As the compiled binary includes the whole stdio library
but only uses a few functions out of it, lots of included code is never reached.
We therefore chose one of these unused functions as wrapper location, as
overwriting this function would not have any impact on the execution of our
small binary. The only visible result that our binary produces is to display
the string “Hello World!”. To show that we actually achieve redirection of
execution flow, we chose the libc exit handler as source location to redirect
execution once again to the main function. This way we would see the
output printed twice, showing that redirection was successful.

We run AutoHook in binary patching mode, to create a patched version of
our original binary. Running the patched binary with qemu-user-static
returns the output twice, as expected:

$ qemu-mipsel-static patched_test

Hello World!
Hello World!

41

4. Applications

[DEFAULT]
endian = CS_MODE_LITTLE_ENDIAN

[exit_hook]
patch_method = instruction
source_loc = 0x00407C54
source_instr_set = MIPS32
wrap_loc = 0x00446BF8
target = 0x00400EA0
target_instr_set = MIPS32

Figure 4.12: AutoHook configuration for MIPS demo application

42

Chapter 5

Conclusion

In this thesis we introduced AutoHook, a lightweight framework for dynamic
analysis of closed-source binaries. AutoHook is designed to quickly redirect
execution flow on assembly level. Execution flow can be redirected either by
patching function pointers or by jumping out of a function of interest using
patched instructions. With the ability to arbitrarily redirect flow to a target
of choice, dynamic code analysis can be performed on the target device itself.
This is of particular interest in cases where the software runs with realtime
constraints. AutoHook does not try to be a fully fledged security analysis
or debugging framework, instead deliberately chooses to provide as much
freedom of choice on what to do with the redirected flow as possible, while
taking care of clean resumption of the original flow.

Due to the nature of our framework, added functionality can easily be
reused and transferred to a different firmware revision within minutes, with-
out changing any of its code.

We showed in two case studies that AutoHook can handle real world applica-
tions. In the first application we used our framework to aid in the process of
reverse engineering an embedded operating system and its subsequent se-
curity analysis by instrumenting the firmware with function tracing abilities.
Simple fuzzing quickly revealed an exploitable bug, for which we addition-
ally showed a proof of concept exploit, after reporting the vulnerability to
the manufacturer.

In the second application we showed, using a small MIPS binary, that the
concept behind our framework is architecture independent.

Besides adding support for more instruction sets, future work could include
adding modules that enable AutoHook to perform security analysis such as
taint tracking or function tracing automatically.

43

Appendix A

Full Listings

A.1 Samsung GT-B3740 USB LTE Stick, Firmware B3740BUKA2

A.1.1 AutoHook Configuration File

1 [DEFAULT]
2 endian = CS_MODE_LITTLE_ENDIAN
3

4

"manual" patches - redirect stdout to uart, clear place where log_flag
is stored and place that holds pointer to temp_buf

5 post_cmds = mww 0x401BA04C 0x27B8DB
6 mww 0x404358F8 0x0
7 mww 0x404358EC 0x0
8 mww 0x404358F4 0x0
9 load_image custom_uart.bin 0x40435900 bin

10 resume
11

12 # interrupt vector hooks! target is printf function
13 # wrapper will go to endless loop after calling target.
14

15 [undefined_instruction]
16 patch_method = pointer
17 source_loc = 0x40000040
18 source_instr_set = Thumb2
19 wrap_loc = 0x405C7000
20 target = 0x401BA018
21 target_instr_set = Thumb2
22 custom_stub = halt_hook_thumb2_eq.wrap
23 CUSTOM_1 = Undefined Instruction!
24 CUSTOM_2 = BLX 0x405C7300
25

45

A. Full Listings

26 [software_interrupt]
27 patch_method = pointer
28 source_loc = 0x40000044
29 source_instr_set = Thumb2
30 wrap_loc = 0x405C7040
31 target = 0x401BA018
32 target_instr_set = Thumb2
33 custom_stub = halt_hook_thumb2_eq.wrap
34 CUSTOM_1 = SWI!
35 CUSTOM_2 = BLX 0x405C7300
36

37 [abort_prefetch]
38 patch_method = pointer
39 source_loc = 0x40000048
40 source_instr_set = Thumb2
41 wrap_loc = 0x405C7080
42 target = 0x401BA018
43 target_instr_set = Thumb2
44 custom_stub = halt_hook_thumb2_eq.wrap
45 CUSTOM_1 = Abort Prefetch!
46 CUSTOM_2 = BLX 0x405C7300
47

48 [abort_data]
49 patch_method = pointer
50 source_loc = 0x4000004C
51 source_instr_set = Thumb2
52 wrap_loc = 0x405C70C0
53 target = 0x401BA018
54 target_instr_set = Thumb2
55 custom_stub = halt_hook_thumb2_eq.wrap
56 CUSTOM_1 = Abort Data!!
57 CUSTOM_2 = BLX 0x405C7300
58

59 # heap corruption hook. target is printf function.
60 # wrapper will go to endless loop after calling target.
61 # CUSTOM_2 issues a call to the mask_interrupts function
62

63 [pal_free_fail]
64 patch_method = instruction
65 source_loc = 0x401BB3C2
66 source_instr_set = Thumb2
67 wrap_loc = 0x405C7100
68 target = 0x401BA018
69 target_instr_set = Thumb2

46

A.1. Samsung GT-B3740 USB LTE Stick, Firmware B3740BUKA2

70 custom_stub = halt_hook_thumb2_eq.wrap
71 CUSTOM_1 = Heap corruption!
72 CUSTOM_2 = BL 0x401BAC82
73 BLX 0x405C7300
74 force_patch = true
75

76 # background task hooking - compress from time to time
77

78 [background_task]
79 patch_method = instruction
80 source_loc = 0x40015C70
81 source_instr_set = Thumb2
82 wrap_loc = 0x405C7140
83 target = 0x405C7300
84 target_instr_set = ARM
85 target_binary = compress.bin
86

87 # function hooks that go to logs!
88

89 [strcat]
90 patch_method = pointer
91 source_loc = 0x40172548
92 source_instr_set = Thumb2
93 wrap_loc = 0x40435B10
94 target = 0x405C71A0
95 target_instr_set = ARM
96 target_binary = logger.bin
97 custom_stub = strcat.pp
98

99 [strcpy]
100 patch_method = instruction
101 source_loc = 0x040027B0
102 source_instr_set = Thumb2
103 wrap_loc = 0x405C7160
104 target = 0x405C71A0
105 target_instr_set = ARM
106 target_binary = logger.bin
107 custom_stub = strcpy.ip
108

109 [strncpy]
110 patch_method = instruction
111 source_loc = 0x402E2054
112 source_instr_set = ARM
113 wrap_loc = 0x40435A20

47

A. Full Listings

114 target = 0x405C71A0
115 target_instr_set = ARM
116 target_binary = logger.bin
117 custom_stub = strncpy.ip
118

119 [memcpy_1]
120 patch_method = pointer
121 source_loc = 0x4017216C
122 source_instr_set = ARM
123 wrap_loc = 0x40435A50
124 target = 0x405C71A0
125 target_instr_set = ARM
126 target_binary = logger.bin
127 custom_stub = memcpy.pp
128

129 [memcpy_2]
130 patch_method = pointer
131 source_loc = 0x40172218
132 source_instr_set = ARM
133 wrap_loc = 0x40435A80
134 target = 0x405C71A0
135 target_instr_set = ARM
136 target_binary = logger.bin
137 custom_stub = memcpy.pp
138

139 [memcpy_3]
140 patch_method = pointer
141 source_loc = 0x401725C4
142 source_instr_set = ARM
143 wrap_loc = 0x40435AB0
144 target = 0x405C71A0
145 target_instr_set = ARM
146 target_binary = logger.bin
147 custom_stub = memcpy.pp
148

149 [memcpy_4]
150 patch_method = pointer
151 source_loc = 0x401725D0
152 source_instr_set = ARM
153 wrap_loc = 0x40435AE0
154 target = 0x405C71A0
155 target_instr_set = ARM
156 target_binary = logger.bin
157 custom_stub = memcpy.pp

48

A.1. Samsung GT-B3740 USB LTE Stick, Firmware B3740BUKA2

A.1.2 Custom Stub: halt hook thumb2 eq.wrap

1 # Enable Thumb2
2 .syntax unified
3

4 .section .rodata
5 msg: .string "CUSTOM_1 LR: 0x%08x\n"
6

7 .section .text
8 PUSH {R0 - R12, LR}
9 LDR R0, =msg

10 MOV R1, LR
11 BL TARGET // designed to call printf

12

CUSTOM_2 // additional instructions (e.g. mask interrupts),
call compression routine

13 POP {R0 - R12, LR}
14

15 _end:
16 B _end

A.1.3 Custom Stub: memcpy.pp

1 .section .text
2 _start:
3 PUSH {R0 - R12, LR}
4 LDR R3, =0x636d656d
5 PUSH {LR}
6 BL TARGET
7 ADD SP, #4
8 POP {R0 - R12}
9 BL REPLACED_STUFF

10 POP {LR}
11 BX LR

A.1.4 Custom Stub: strcat.pp

1 # Enable Thumb2
2 .syntax unified
3

4 .section .text
5 _start:
6 PUSH {R0 - R12, LR}
7 EOR R2, R2
8 LDR R3, =0x61637473
9 PUSH {LR}

49

A. Full Listings

10 BLX TARGET
11 ADD SP, #4
12 POP {R0 - R12}
13 BL REPLACED_STUFF
14 POP {LR}
15 BX LR

A.1.5 Custom Stub: strcpy.ip

1 # Enable Thumb2
2 .syntax unified
3

4 .section .text
5 _start:
6 PUSH {R0 - R12, LR}
7 EOR R2, R2
8 LDR R3, =0x63727473
9 PUSH {LR}

10 BLX TARGET
11 ADD SP, #4
12 POP {R0 - R12, LR}
13 REPLACED_STUFF
14 .align 2
15 LDR PC, [PC]
16 .word RETURN_ADDRESS

A.1.6 Custom Stub: strncpy.ip

1 .section .text
2 _start:
3 PUSH {R0 - R12, LR}
4 LDR R3, =0x6e727473
5 PUSH {LR}
6 BL TARGET
7 ADD SP, #4
8 POP {R0 - R12, LR}
9 REPLACED_STUFF

10 LDR PC, [PC, #-4]
11 .word RETURN_ADDRESS

50

Bibliography

[1] J. Viega and H. Thompson, “The State of Embedded-Device Security
(Spoiler Alert: It’s Bad),” Security Privacy, IEEE, vol. 10, pp. 68–70,
September 2012.

[2] B. Schneier, “The Internet of Things Is Wildly Insecure—And Often Un-
patchable.” [Online] Available https://www.schneier.com/essays/
archives/2014/01/the_internet_of_thin.html, January 2014.

[3] “Proofpoint Uncovers Internet of Things (IoT) Cyberattack.” [Online]
Available http://www.proofpoint.com/about-us/press-releases/
01162014.php, January 2014.

[4] Shacham, Page, Pfaff, Goh, Modadugu, and Boneh, “On the Effective-
ness of Address-Space Randomization,” in SIGSAC: 11th ACM Confer-
ence on Computer and Communications Security, ACM SIGSAC, 2004.

[5] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-overflow Attacks,” in Proceedings of
the 7th Conference on USENIX Security Symposium - Volume 7, SSYM’98,
(Berkeley, CA, USA), pp. 5–5, USENIX Association, 1998.

[6] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation,” in Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’07, (New York, NY, USA), pp. 89–100, ACM, 2007.

[7] J. Clause, W. Li, and A. Orso, “Dytan: A Generic Dynamic Taint Anal-
ysis Framework,” in Proceedings of the 2007 International Symposium on
Software Testing and Analysis, ISSTA ’07, (New York, NY, USA), pp. 196–
206, ACM, 2007.

51

https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
http://www.proofpoint.com/about-us/press-releases/01162014.php
http://www.proofpoint.com/about-us/press-releases/01162014.php

Bibliography

[8] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-
vivo Multi-path Analysis of Software Systems,” in Proceedings of the Six-
teenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI, (New York, NY, USA),
pp. 265–278, ACM, 2011.

[9] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference,
ATEC ’05, (Berkeley, CA, USA), pp. 41–41, USENIX Association, 2005.

[10] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar: A
Framework to Support Dynamic Security Analysis of Embedded Sys-
tems’ Firmwares,” in Network and Distributed System Security (NDSS)
Symposium, NDSS 14, February 2014.

[11] “IEEE 100 The Authoritative Dictionary of IEEE Standards Terms Sev-
enth Edition,” IEEE Std 100-2000, p. 438, 2000.

[12] A. Cui, “Embedded Device Firmware Vulnerability Hunting Using
FRAK,” in Black Hat USA, 2012.

[13] “Capstone - The ultimate disassembly framework.” [Online] Available
http://www.capstone-engine.org/, April 2014.

[14] A. Albertini, “How to Manually Attach a File to a PDF,” in Issue 0x4,
International Journal of PoC∣∣GTFO, June 2014.

[15] R. Amin, “Samsung LTE USB stick GT-B3730/B3740 hack-
ing.” [Online] Available http://labs.p1sec.com/2013/08/05/
samsung-lte-usb-stick-gt-b3730b3740-hacking/, August 2013.

[16] “QuickLZ.” [Online] Available http://www.quicklz.com/, January
2011.

52

http://www.capstone-engine.org/
http://labs.p1sec.com/2013/08/05/samsung-lte-usb-stick-gt-b3730b3740-hacking/
http://labs.p1sec.com/2013/08/05/samsung-lte-usb-stick-gt-b3730b3740-hacking/
http://www.quicklz.com/

	Contents
	List of Figures
	Introduction
	Background
	Definitions
	Embedded Devices
	Firmware
	Patching
	Static and Dynamic Analysis
	Taint Tracking
	Symbolic Execution

	Related Work

	The AutoHook Framework
	Overview
	Redirecting Execution
	Instruction Patching
	Pointer Patching

	Memory and Binary Modifications
	Non-Persistent Patching
	Persistent Patching

	Core Components
	Assembly Stubs
	Configuration Files
	Disassembly Engine
	Firmware Binaries
	Adding new Instruction Sets

	Discussion
	Example Usage
	Obtaining AutoHook

	Applications
	Samsung GT-B3740 USB LTE Stick
	Debug Access
	Boot Procedure
	Firmware Update Mechanism
	Embedded Operating System Analysis
	Function Tracing with AutoHook
	Security Analysis
	Exploitation

	MIPS Desktop Application

	Conclusion
	Full Listings
	Samsung GT-B3740 USB LTE Stick, Firmware B3740BUKA2
	AutoHook Configuration File
	Custom Stub: halt_hook_thumb2_eq.wrap
	Custom Stub: memcpy.pp
	Custom Stub: strcat.pp
	Custom Stub: strcpy.ip
	Custom Stub: strncpy.ip

	Bibliography

AutoHook/README.txt

AutoHook v0.1 Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

Please refer to the thesis pdf, section AutoHook, for usage and a thorough description of available functionality.

AutoHook/stubs/ARM.pp_ne

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

.section .text
_start:
PUSH {R0 - R12, LR}
BLX TARGET
POP {R0 - R12}
BL REPLACED_STUFF
POP {LR}
BX LR

AutoHook/stubs/ARM.ip_ne

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

.section .text
_start:
PUSH {R0 - R12, LR}
BLX TARGET
POP {R0 - R12, LR}
REPLACED_STUFF
LDR PC, [PC, #-4]
.word RETURN_ADDRESS

AutoHook/stubs/Thumb2.hook

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

minimum size code to jump to arbitrary 32bit location
should be position independent

Enable Thumb2
.syntax unified

.section .text
_start:
LDR PC, [PC]
.word WRAP_ADDRESS

AutoHook/stubs/ARM.ip_eq

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

.section .text
_start:
PUSH {R0 - R12, LR}
BL TARGET
POP {R0 - R12, LR}
REPLACED_STUFF
LDR PC, [PC, #-4]
.word RETURN_ADDRESS

AutoHook/stubs/Thumb2.ip_ne

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Enable Thumb2
.syntax unified

.section .text
_start:
PUSH {R0 - R12, LR}
BLX TARGET
POP {R0 - R12, LR}
REPLACED_STUFF
.align 2
LDR PC, [PC]
.word RETURN_ADDRESS

AutoHook/stubs/Thumb2.pp_eq

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Enable Thumb2
.syntax unified

.section .text
_start:
PUSH {R0 - R12, LR}
BL TARGET
POP {R0 - R12}
BL REPLACED_STUFF
POP {LR}
BX LR

AutoHook/stubs/Thumb2.pp_ne

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Enable Thumb2
.syntax unified

.section .text
_start:
PUSH {R0 - R12, LR}
BLX TARGET
POP {R0 - R12}
BL REPLACED_STUFF
POP {LR}
BX LR

AutoHook/stubs/MIPS32.ip_eq

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

I know this wrapper is huge - but we have to
save all registers that could possibly affect
behaviour when replacing instructions

.text
main:
addi $sp, $sp, -100
sw $v0, 0($sp)
sw $v1, 4($sp)
sw $a0, 8($sp)
sw $a1, 12($sp)
sw $a2, 16($sp)
sw $a3, 20($sp)
sw $t0, 24($sp)
sw $t1, 28($sp)
sw $t2, 32($sp)
sw $t3, 36($sp)
sw $t4, 40($sp)
sw $t5, 44($sp)
sw $t6, 48($sp)
sw $t7, 52($sp)
sw $t8, 56($sp)
sw $t9, 60($sp)
sw $s0, 64($sp)
sw $s1, 68($sp)
sw $s2, 72($sp)
sw $s3, 76($sp)
sw $s4, 80($sp)
sw $s5, 84($sp)
sw $s6, 88($sp)
sw $s7, 92($sp)
sw $ra, 96($sp)
jal TARGET
lw $v0, 0($sp)
lw $v1, 4($sp)
lw $a0, 8($sp)
lw $a1, 12($sp)
lw $a2, 16($sp)
lw $a3, 20($sp)
lw $t0, 24($sp)
lw $t1, 28($sp)
lw $t2, 32($sp)
lw $t3, 36($sp)
lw $t4, 40($sp)
lw $t5, 44($sp)
lw $t6, 48($sp)
lw $t7, 52($sp)
lw $t8, 56($sp)
lw $t9, 60($sp)
lw $s0, 64($sp)
lw $s1, 68($sp)
lw $s2, 72($sp)
lw $s3, 76($sp)
lw $s4, 80($sp)
lw $s5, 84($sp)
lw $s6, 88($sp)
lw $s7, 92($sp)
lw $ra, 96($sp)
addi $sp, $sp, 100
REPLACED_STUFF
j RETURN_ADDRESS

AutoHook/stubs/ARM.pp_eq

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

.section .text
_start:
PUSH {R0 - R12, LR}
BL TARGET
POP {R0 - R12}
BL REPLACED_STUFF
POP {LR}
BX LR

AutoHook/stubs/MIPS32.hook

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

minimum size code to jump to almost arbitrary 32bit location
see MIPS pseudo-direct addressing
should be position independent

.set noreorder

.text
main:
j WRAP_ADDRESS

AutoHook/stubs/Thumb2.ip_eq

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Enable Thumb2
.syntax unified

.section .text
_start:
PUSH {R0 - R12, LR}
BL TARGET
POP {R0 - R12, LR}
REPLACED_STUFF
.align 2
LDR PC, [PC]
.word RETURN_ADDRESS

AutoHook/stubs/MIPS32.pp_eq

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

save everything that needs to
be saved by the callee

.text
main:
addi $sp, $sp, -36
sw $s0, 0($sp)
sw $s1, 4($sp)
sw $s2, 8($sp)
sw $s3, 12($sp)
sw $s4, 16($sp)
sw $s5, 20($sp)
sw $s6, 24($sp)
sw $s7, 28($sp)
sw $ra, 32($sp)
jal TARGET
lw $s0, 0($sp)
lw $s1, 4($sp)
lw $s2, 8($sp)
lw $s3, 12($sp)
lw $s4, 16($sp)
lw $s5, 20($sp)
lw $s6, 24($sp)
lw $s7, 28($sp)
addi $sp, $sp, 32
jal REPLACED_STUFF
sw $ra, 0($sp)
addi $sp, $sp, 4
jr $ra

AutoHook/stubs/ARM.hook

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

minimum size code to jump to arbitrary 32bit location
should be position independent

.section .text
_start:
LDR PC, [PC, #-4]
.word WRAP_ADDRESS

AutoHook/cfg/instruction_sets.cfg

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

[Thumb2]
compiler_little = arm-none-eabi-as -o /tmp/hook_tmp.o -m thumb -EL /tmp/hook_tmp.in
compiler_big = arm-none-eabi-as -o /tmp/hook_tmp.o -m thumb -EB /tmp/hook_tmp.in
linker_little = arm-none-eabi-ld -EL -Ttext=ADDRESS -o /tmp/hook_tmp.elf /tmp/hook_tmp.o 2> /dev/null
linker_big = arm-none-eabi-ld -EB -Ttext=ADDRESS -o /tmp/hook_tmp.elf /tmp/hook_tmp.o 2> /dev/null
objcopy = arm-none-eabi-objcopy -O binary /tmp/hook_tmp.elf OUTFILE
capstone_arch = CS_ARCH_ARM
capstone_mode = CS_MODE_THUMB
bad_operands = pc
bad_mnemonics = b cb
addr_add = 1
align = 4

[ARM]
compiler_little = arm-none-eabi-as -o /tmp/hook_tmp.o -EL /tmp/hook_tmp.in
compiler_big = arm-none-eabi-as -o /tmp/hook_tmp.o -EB /tmp/hook_tmp.in
linker_little = arm-none-eabi-ld -EL -Ttext=ADDRESS -o /tmp/hook_tmp.elf /tmp/hook_tmp.o 2> /dev/null
linker_big = arm-none-eabi-ld -EB -Ttext=ADDRESS -o /tmp/hook_tmp.elf /tmp/hook_tmp.o 2> /dev/null
objcopy = arm-none-eabi-objcopy -O binary /tmp/hook_tmp.elf OUTFILE
capstone_arch = CS_ARCH_ARM
capstone_mode = CS_MODE_ARM
bad_operands = pc
bad_mnemonics = b cb
addr_add = 0
align = 4

[MIPS32]
compiler_little = mipsel-linux-gnu-as -o /tmp/hook_tmp.o -EL /tmp/hook_tmp.in
compiler_big = mipsel-linux-gnu-as -o /tmp/hook_tmp.o -EB /tmp/hook_tmp.in
linker_little = mipsel-linux-gnu-ld -EL -Ttext=ADDRESS -o /tmp/hook_tmp.elf /tmp/hook_tmp.o 2> /dev/null
linker_big = mipsel-linux-gnu-ld -EB -Ttext=ADDRESS -o /tmp/hook_tmp.elf /tmp/hook_tmp.o 2> /dev/null
objcopy = mipsel-linux-gnu-objcopy -O binary -R .reginfo /tmp/hook_tmp.elf OUTFILE
capstone_arch = CS_ARCH_MIPS
capstone_mode = CS_MODE_32
bad_operands =
bad_mnemonics = b
addr_add = 0
align = 4

AutoHook/AutoHook.py

#!/usr/bin/python2

AutoHook
A Lightweight Framework for Dynamic Analysis of Closed-Source Binaries

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from capstone import *
from elftools.elf.elffile import ELFFile
import ConfigParser
import os
import shutil
import struct
import sys

constants
how many bytes to disassemble
MAX_DISASSEMBLE = 0x20
DIR_SEPERATOR = "/"
TMP_DIR = "/tmp"

def patch_binaries(fw, cmds, patch_dir, endian):
 """Patches the firmware binaries according to the commands that would be passed to OpenOCD normally"""
 outfile = patch_dir + DIR_SEPERATOR + "patched_" + fw["file"].split(DIR_SEPERATOR)[-1]
 shutil.copyfile(fw["file"], outfile)

 with open(outfile, "r+b") as f:
 # go in reverse order because we delete entries if parsed successful
 for i in xrange(len(cmds), 0, -1):
 addr = cmds[i-1]["address"]
 size = cmds[i-1]["size"]

 # check if current "patch" would fit in the existing binary
 if fw["start"] <= addr and fw["end"] > addr + size:
 # goto current offset
 offset = addr - fw["start"] + fw["offset"]
 f.seek(offset)

 if cmds[i-1]["type"] == "bin":
 file_name = cmds[i-1]["value"]

 # patch file!
 with open(file_name, "rb") as b: f.write(b.read())
 print "\x1b[01;33m[%s]\x1b[00m Offset 0x%08x: Incorporating binary %s" % (fw["file"].split(DIR_SEPERATOR)[-1], offset, file_name)

 elif cmds[i-1]["type"] == "int":
 value = cmds[i-1]["value"]

 # patch file!
 if size == 4:
 bit = "32"
 if endian == "little": f.write(struct.pack("<I", value))
 else: f.write(struct.pack(">I", value))

 elif size == 2:
 bit = "16"
 if endian == "little": f.write(struct.pack("<H", value))
 else: f.write(struct.pack(">H", value))

 else:
 bit = "8"
 f.write(chr(value))

 print "\x1b[01;33m[%s]\x1b[00m Offset 0x%08x: Incorporating %sbit value 0x%x" % (fw["file"].split(DIR_SEPERATOR)[-1], offset, bit, value)

 del cmds[i-1]

 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;35mPatched firmware file written to %s\n" % (fw["file"].split(DIR_SEPERATOR)[-1], outfile)

def parse_openocd(openocd):
 """Parses OpenOCD commands and returns list that can then be fed to patch_binaries"""
 cmds_in = openocd.split("\n")
 leftovers = cmds_in
 cmds_out = []

 # go in reverse order because we delete entries if parsed successful
 for i in xrange(len(cmds_in), 0, -1):
 cm = cmds_in[i-1].split()

 if cm[0] == "mww":
 cmds_out.append({"address": int(cm[1], 16), "type": "int", "value": int(cm[2], 16), "size": 4})
 del leftovers[i-1]
 elif cm[0] == "mwh":
 cmds_out.append({"address": int(cm[1], 16), "type": "int", "value": int(cm[2], 16), "size": 2})
 del leftovers[i-1]
 elif cm[0] == "mwb":
 cmds_out.append({"address": int(cm[1], 16), "type": "int", "value": int(cm[2], 16), "size": 1})
 del leftovers[i-1]
 elif cm[0] == "load_image":
 bin_file = "bin" + DIR_SEPERATOR + cm[1]
 if not(os.path.exists(bin_file)):
 print "\x1b[01;31mBinary patching aborted - make sure %s exists!" % bin_file
 exit(1)

 cmds_out.append({"address": int(cm[2], 16), "type": "bin", "value": bin_file, "size": os.stat(bin_file).st_size})
 del leftovers[i-1]

 if len(leftovers) > 0:
 print "The following commands will be ignored: %s" % ", ".join(leftovers)

 print ""
 return sorted(cmds_out)[::-1]

def print_usage():
 print "Usage:\t./AutoHook.py [-p DIR] HOOK_CONFIG FW_ELF_1 [FW_ELF_2 ...]"
 print "or\t./AutoHook.py [-p DIR] HOOK_CONFIG FW_BIN_1 FW_LOAD_ADDR_1 [FW_BIN_2 FW_LOAD_ADDR_2 ...]\n"
 print "\t-p DIR\tGenerate patched FW files in DIR instead of displaying OpenOCD commands"
 exit()

def create_binary(comp, link, objc, hook, hook_name, loc = 0x0):
 """Issues the provided shell commands to create a binary. Returns the size of the newly created binary"""

 # compile temporary file /tmp/hook_tmp.in
 if os.system(comp) != 0:
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mHook compilation failed!" % hook
 exit(1)

 # link file
 if os.system(link.replace("ADDRESS", ("0x%08x" % loc))) != 0:
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mHook linking failed!" % hook
 exit(1)

 # convert elf to flat binary
 if os.system(objc.replace("OUTFILE", "bin" + DIR_SEPERATOR + hook_name)) != 0:
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mHook objcopy failed!" % hook
 exit(1)

 print "\x1b[01;33m[%s]\x1b[00m Writing binary to %s" % (hook, "bin" + DIR_SEPERATOR + hook_name)
 patch_size = os.stat("bin" + DIR_SEPERATOR + hook_name).st_size

 if patch_size == 0:
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mSomething's wrong... size of %s is zero!" % (hook, "bin" + DIR_SEPERATOR + hook_name)
 exit(1)

 return patch_size

def get_instructions(firmware_bin, firmware_load, firmware_off, function_loc, capstone_arch, capstone_mode, endian):
 """Disassemble the MAX_DISASSEMBLE first bytes of function_loc in firmware_bin and return the instructions"""

 CODE = ""
 with open(firmware_bin, "rb") as fb:
 fb.seek(function_loc - firmware_load + firmware_off)
 CODE = fb.read(MAX_DISASSEMBLE)

 instructions = []
 md = Cs(capstone_arch, capstone_mode + endian)

 # convert disassembled instructions to list of dictionaries
 for i in md.disasm(CODE, function_loc):
 instructions.append({"address": i.address, "mnemonic": i.mnemonic, "operands": i.op_str})

 return instructions

def auto_hook(instructions, patch_size, bad_operands, bad_mnemonics, align, force_patch, hook):
 """Determine best location to set hook to. Returns the starting offset of the hook within the replaced instructions, the address to return to and the replaced instructions"""

 found = False
 for i in range(0, len(instructions)):
 off = instructions[i]["address"]

 # check for proper alignment
 if off % align == 0:
 found2 = False

 # patching is not forced, check for bad registers and instructions
 if not force_patch:
 # check if we can fit our patch in existing instructions
 for j in range(i, len(instructions)):
 off2 = instructions[j]["address"]

 if off2 == off + patch_size:
 found2 = True
 break

 if found2:
 bad = False
 for k in instructions[i:j]:
 # test assembler operands for bad registers
 for bo in bad_operands:
 if k["operands"].find(bo) != -1: bad = True
 if bad: break

 # test assembler mnemonics for bad values
 for bm in bad_mnemonics:
 if k["mnemonic"][:len(bm)] == bm:
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mBad instruction detected! Result unpredictable:" % hook
 print "\x1b[01;33m[%s]\x1b[00m \t0x%08x:\t%s\t%s" % (hook, k["address"], k["mnemonic"], k["operands"])
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mTry a different starting point (function_loc) or use the force_patch switch if you don't intend to resume the original flow." % hook
 exit(1)

 if not bad:
 found = True
 break

 if found: break

 else:
 found = True
 off2 = 0x0
 break

 if not found:
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mCould not automatically detect hooking point! This either means that bad operands were detected or that the hooking code cannot replace the available instructions due to different instruction size / alignment." % hook
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mTry a different starting point (function_loc) or use the force_patch switch if you don't intend to resume the original flow." % hook
 exit(1)

 rep_stuff = ""
 if not force_patch:
 print "\x1b[01;33m[%s]\x1b[00m Will replace the following instructions (*):" % hook
 for k in range(0, len(instructions[:j+2])):
 if k >= i and k < j:
 # get replaced instructions - these will be executed in the wrapper!
 rep_stuff += instructions[k]["mnemonic"] + "\t" + instructions[k]["operands"] + "\n"
 print "\x1b[01;33m[%s]\x1b[00m *\t0x%08x:\t%s\t%s" % (hook, instructions[k]["address"], instructions[k]["mnemonic"], instructions[k]["operands"])
 else:
 print "\x1b[01;33m[%s]\x1b[00m \t0x%08x:\t%s\t%s" % (hook, instructions[k]["address"], instructions[k]["mnemonic"], instructions[k]["operands"])
 else:
 print "\x1b[01;33m[%s]\x1b[00m Patching is forced, hook patches start at 0x%08x" % (hook, off)

 return (i, off2, rep_stuff)

main routine start
header = "\n"
header += " __^__ __^__\n"
header += " (___)-------------------(___)\n"
header += " | / | AutoHook v0.1 | \ |\n"
header += " |___| by Christoph Knecht |___|\n"
header += " (_____)-------------------(_____)\n"

print "\x1b[01;32m" + header

if len(sys.argv) < 3: print_usage()
elif sys.argv[1] == "-p" and len(sys.argv) < 5: print_usage()

parse arguments
if sys.argv[1] == "-p":
 patch_bin_flag = True
 patch_dir = sys.argv[2]
 cfg_file = sys.argv[3]
 fw_arg_start = 4

 if not os.path.isdir(patch_dir):
 print "\x1b[01;31mBad patch directory specified!"
 exit(1)
else:
 patch_bin_flag = False
 cfg_file = sys.argv[1]
 fw_arg_start = 2

check if supplied firmware binary is ELF or flat binary
elf_mode = True
with open(sys.argv[fw_arg_start], "rb") as fbin:
 try:
 elffile = ELFFile(fbin)
 except:
 elf_mode = False

add all provided firmware binaries to a list
firmwares = []
if elf_mode:
 # ELF mode!
 for i in range(fw_arg_start, len(sys.argv)):
 with open(sys.argv[i], "rb") as fbin:
 elffile = ELFFile(fbin)
 section = elffile.get_section_by_name(b'.text')

 if not section:
 print "\x1b[01;31mCould not find section .text! Stripped ELFs are not supported!"
 exit(1)

 firmwares.append({"file": sys.argv[i], "start": section['sh_addr'], "end": section['sh_addr'] + section['sh_size'], "offset": section['sh_offset']})

else:
 # binary mode!
 if len(sys.argv) < 4: print_usage()
 elif sys.argv[1] == "-p" and len(sys.argv) < 6: print_usage()

 for i in xrange(fw_arg_start, len(sys.argv) - (len(sys.argv) % 2), 2):
 start = int(sys.argv[i+1], 16)
 end = start + os.stat(sys.argv[i]).st_size
 firmwares.append({"file": sys.argv[i], "start": start, "end": end, "offset": 0})

print "Cleaning up bin directory (_hook.bin and _wrap.bin files)"

remove previously generated patches
for entry in os.listdir("bin"):
 if entry[-9:] == "_wrap.bin" or entry[-9:] == "_hook.bin":
 os.remove("bin" + DIR_SEPERATOR + entry)

intialize output string
openocd = ""

read main config file
ins_cfg = ConfigParser.RawConfigParser()
ins_cfg.read("cfg" + DIR_SEPERATOR + "instruction_sets.cfg")
supported = ins_cfg.sections()

read hook config file
hook_cfg = ConfigParser.RawConfigParser()
hook_cfg.read(cfg_file)
endian = hook_cfg.get("DEFAULT", "endian")

dictionary that keeps track of files that should be loaded additionally
target_binaries = {}

if endian == "CS_MODE_LITTLE_ENDIAN": end_print = "little"
elif endian == "CS_MODE_BIG_ENDIAN": end_print = "big"
else:
 print "\x1b[01;31mBad endian mode specified!"
 exit(1)

print "Firmware mappings:\n"
for fw in sorted(firmwares):
 print "\t0x%08x -> %s" % (fw["start"], fw["file"].split(DIR_SEPERATOR)[-1])
print ""
print "Parsing %s containing %d hooks (%s endian):\n" % (cfg_file, len(hook_cfg.sections()), end_print)

main loop - create patches for all hooks
for hook in hook_cfg.sections():
 print "\x1b[01;33m[%s]\x1b[00m Start parsing" % hook

 # get config values of current hook
 patch_method = hook_cfg.get(hook, "patch_method")
 source_loc = int(hook_cfg.get(hook, "source_loc"), 16)
 source_instr_set = hook_cfg.get(hook, "source_instr_set")
 wrap_loc = int(hook_cfg.get(hook, "wrap_loc"), 16)
 target = int(hook_cfg.get(hook, "target"), 16)
 target_instr_set = hook_cfg.get(hook, "target_instr_set")

 # if the current hook has the optional value targ_binary set, add it to the dictionary
 if hook_cfg.has_option(hook, "target_binary"):
 target_binaries[target] = hook_cfg.get(hook, "target_binary")

 # check if this hook uses a custom wrapper stub
 custom_stub = ""
 if hook_cfg.has_option(hook, "custom_stub"):
 custom_stub = hook_cfg.get(hook, "custom_stub")

 # check if the force_patch option was specified
 force_patch = False
 if hook_cfg.has_option(hook, "force_patch"):
 force_patch = hook_cfg.getboolean(hook, "force_patch")

 # check whether a valid patch_method was chosen
 if patch_method != "pointer" and patch_method != "instruction":
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mSpecified patch_method not supported! Aborting..." % hook
 exit(1)

 if source_instr_set not in supported:
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mFunction instruction set %s is not supported! Please extend it yourself." % (hook, func_instr_set)
 exit(1)

 if target_instr_set not in supported:
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mTarget instruction set %s is not supported! Please extend it yourself." % (hook, target_instr_set)
 exit(1)

 # check what template has to be used
 if source_instr_set == target_instr_set: wrap_suffix = "_eq"
 else: wrap_suffix = "_ne"

 # get config values of selected instruction set
 # get shell commands to compile binaries
 # use different compile and linking commands depending on endianness
 if endian == "CS_MODE_LITTLE_ENDIAN":
 comp = ins_cfg.get(source_instr_set, "compiler_little")
 link = ins_cfg.get(source_instr_set, "linker_little")
 elif endian == "CS_MODE_BIG_ENDIAN":
 comp = ins_cfg.get(source_instr_set, "compiler_big")
 link = ins_cfg.get(source_instr_set, "linker_big")

 objc = ins_cfg.get(source_instr_set, "objcopy")

 # get address flags for both wrapper (func_addr_add) and the target (target_addr_add)
 source_addr_add = int(ins_cfg.get(source_instr_set, "addr_add"), 16)
 target_addr_add = int(ins_cfg.get(target_instr_set, "addr_add"), 16)

 print "\x1b[01;33m[%s]\x1b[00m Going for %s patching." % (hook, patch_method)

 # find the relevant firmware binary for the current hook
 firmware_bin = ""
 firmware_load = 0x0
 firmware_off = 0x0
 for f in firmwares:
 if f["start"] <= source_loc and f["end"] > source_loc + MAX_DISASSEMBLE:
 firmware_bin = f["file"]
 firmware_load = f["start"]
 firmware_off = f["offset"]
 break

 if firmware_bin == "":
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;31mFunction not found in provided firmware binaries. Please check your arguments!" % hook
 exit(1)

 if patch_method == "instruction":
 # get disassembly (capstone) flags
 capstone_arch = ins_cfg.get(source_instr_set, "capstone_arch")
 capstone_mode = ins_cfg.get(source_instr_set, "capstone_mode")

 # get forbidden registers (space seperated)
 bad_operands = ins_cfg.get(source_instr_set, "bad_operands").split()

 # get forbidden instructions (beginning of instructions that is)
 bad_mnemonics = ins_cfg.get(source_instr_set, "bad_mnemonics").split()

 # alignment of instructions such that hook stub can be properly inserted
 align = int(ins_cfg.get(target_instr_set, "align"), 16)

 # open hook stub and replace placeholders
 hook_stub = ""
 with open("stubs" + DIR_SEPERATOR + source_instr_set + ".hook", "rb") as hs:
 # replace WRAP_ADDRESS placeholder
 wrap_address = wrap_loc + source_addr_add
 hook_stub = hs.read().replace("WRAP_ADDRESS", ("0x%08x" % wrap_address))

 # write modified hook_stub to temporary file
 with open(TMP_DIR + DIR_SEPERATOR + "hook_tmp.in", "wb") as hs:
 hs.write(hook_stub)

 # create binary
 hook_name = hook + "_hook.bin"
 patch_size = create_binary(comp, link, objc, hook, hook_name)

 # disassemble function to hook
 instructions = get_instructions(firmware_bin, firmware_load, firmware_off, source_loc, vars()[capstone_arch], vars()[capstone_mode], vars()[endian])

 # determine best place to hook, get the starting offset of the hook within the replaced instructions, the address to return to and the replaced instructions
 (start, ret, rep_stuff) = auto_hook(instructions, patch_size, bad_operands, bad_mnemonics, align, force_patch, hook)

 openocd += "load_image %s 0x%08x bin\n" % (hook_name, instructions[start]["address"])
 return_address = ret + source_addr_add
 wrap_type = ".ip"

 else:
 # Pointer patching
 with open(firmware_bin, "rb") as fb:
 fb.seek(source_loc - firmware_load + firmware_off)

 # read old offset
 if end_print == "little": old_pointer = struct.unpack("<I", fb.read(4))[0]
 else: old_pointer = struct.unpack(">I", fb.read(4))[0]

 rep_stuff = "0x%08x" % old_pointer
 return_address = 0x0
 openocd += "mww 0x%08x 0x%08x\n" % (source_loc, wrap_loc + source_addr_add)
 wrap_type = ".pp"

 # open wrapper stub and replace placeholders
 wrap_stub = ""

 # check if custom template exists for this hook
 if custom_stub != "":
 fname = "custom_stubs" + DIR_SEPERATOR + custom_stub
 print "\x1b[01;33m[%s]\x1b[00m Using custom wrapper stub: %s" % (hook, custom_stub)

 else:
 fname = "stubs" + DIR_SEPERATOR + source_instr_set + wrap_type + wrap_suffix

 with open(fname, "rb") as ws:
 # replace placeholders
 target_address = target + target_addr_add
 wrap_stub = ws.read().replace("RETURN_ADDRESS", ("0x%08x" % return_address)).replace("REPLACED_STUFF", rep_stuff).replace("TARGET", ("0x%08x" % target_address))

 # check for - and replace - CUSTOM_1 - CUSTOM_9 replacements
 if custom_stub != "":
 for i in range(1, 10):
 if hook_cfg.has_option(hook, ("CUSTOM_%d" % i)): wrap_stub = wrap_stub.replace(("CUSTOM_%d" % i), hook_cfg.get(hook, ("CUSTOM_%d" % i)))

 # write modified wrap_stub to temporary file
 with open(TMP_DIR + DIR_SEPERATOR + "hook_tmp.in", "wb") as ws:
 ws.write(wrap_stub)

 # create binary
 wrap_name = hook + "_wrap.bin"
 patch_size = create_binary(comp, link, objc, hook, wrap_name, wrap_loc)
 print "\x1b[01;33m[%s]\x1b[00m \x1b[01;35mWrapper binary is %d bytes. Make sure the specified wrap_loc provides enough space.\n" % (hook, patch_size)

 openocd += "load_image %s 0x%08x bin\n" % (wrap_name, wrap_loc)

append loading commands for target_binaries
for t in target_binaries:
 openocd += "load_image %s 0x%08x bin\n" % (target_binaries[t], t)

add pre commands
if hook_cfg.has_option("DEFAULT", "pre_cmds"):
 openocd = hook_cfg.get("DEFAULT", "pre_cmds").strip() + "\n" + openocd.strip()

add post commands
if hook_cfg.has_option("DEFAULT", "post_cmds"):
 openocd = openocd.strip() + "\n" + hook_cfg.get("DEFAULT", "post_cmds").strip()

go for binary patching!
if patch_bin_flag:
 print "\x1b[01;32mStart patching firmware binaries..."
 cmds = parse_openocd(openocd.strip())

 for fw in sorted(firmwares):
 patch_binaries(fw, cmds, patch_dir, end_print)

 if len(cmds) != 0:
 print "\x1b[01;31mWARNING: The following patches could not be incorporated! Only patches that fit into the original binaries as a whole - or into the .text segment in case of ELF files - will be applied! Please adjust the size of the original binaries (e.g. use truncate) and try again!\n"
 for cm in sorted(cmds):
 if cm["type"] == "bin":
 print " - Address 0x%08x: Binary %s" % (cm["address"], cm["value"])

 elif cm["type"] == "int":
 if cm["size"] == 4: bit = "32"
 elif cm["size"] == 2: bit = "16"
 else: bit = "8"
 print " - Address 0x%08x: %sbit value 0x%x" % (cm["address"], bit, cm["value"])

 print ""

 else:
 print "\x1b[01;32mAll done!\n"

just display OpenOCD commands
else:
 print "\x1b[01;32mAll done! Please copy all binary files from the bin directory (and - if specified - target binaries as well) to your OpenOCD working dir! Then paste the following commands into your OpenOCD shell:\n\x1b[00m"

 print openocd.strip()
 print ""

function_tracer/autohook_files/custom_stubs/halt_hook_thumb2_eq.wrap

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Enable Thumb2
.syntax unified

.section .rodata
msg: .string "CUSTOM_1 LR: 0x%08x\n"

.section .text
PUSH {R0 - R12, LR}
LDR R0, =msg
MOV R1, LR
BL TARGET // designed to call printf
CUSTOM_2 // additional instructions (e.g. mask interrupts), call compression routine
POP {R0 - R12, LR}

_end:
B _end

function_tracer/autohook_files/custom_stubs/strcat.pp

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Enable Thumb2
.syntax unified

.section .text
_start:
PUSH {R0 - R12, LR}
EOR R2, R2
LDR R3, =0x61637473
PUSH {LR}
BLX TARGET
ADD SP, #4
POP {R0 - R12}
BL REPLACED_STUFF
POP {LR}
BX LR

function_tracer/autohook_files/custom_stubs/strncpy.ip

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

.section .text
_start:
PUSH {R0 - R12, LR}
LDR R3, =0x6e727473
PUSH {LR}
BL TARGET
ADD SP, #4
POP {R0 - R12, LR}
REPLACED_STUFF
LDR PC, [PC, #-4]
.word RETURN_ADDRESS

function_tracer/autohook_files/custom_stubs/memcpy.pp

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

.section .text
_start:
PUSH {R0 - R12, LR}
LDR R3, =0x636d656d
PUSH {LR}
BL TARGET
ADD SP, #4
POP {R0 - R12}
BL REPLACED_STUFF
POP {LR}
BX LR

function_tracer/autohook_files/custom_stubs/strcpy.ip

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Enable Thumb2
.syntax unified

.section .text
_start:
PUSH {R0 - R12, LR}
EOR R2, R2
LDR R3, =0x63727473
PUSH {LR}
BLX TARGET
ADD SP, #4
POP {R0 - R12, LR}
REPLACED_STUFF
.align 2
LDR PC, [PC]
.word RETURN_ADDRESS

function_tracer/autohook_files/b3740.cfg

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

[DEFAULT]
endian = CS_MODE_LITTLE_ENDIAN

"manual" patches - redirect stdout to uart, clear place where log_flag is stored and place that holds pointer to temp_buf
post_cmds = mww 0x401BA04C 0x27B8DB
 mww 0x404358F8 0x0
 mww 0x404358EC 0x0
 mww 0x404358F4 0x0
 load_image custom_uart.bin 0x40435900 bin
 resume

interrupt vector hooks! target is printf function
wrapper will go to endless loop after calling target.

[undefined_instruction]
patch_method = pointer
source_loc = 0x40000040
source_instr_set = Thumb2
wrap_loc = 0x405C7000
target = 0x401BA018
target_instr_set = Thumb2
custom_stub = halt_hook_thumb2_eq.wrap
CUSTOM_1 = Undefined Instruction!
CUSTOM_2 = BLX 0x405C7300

[software_interrupt]
patch_method = pointer
source_loc = 0x40000044
source_instr_set = Thumb2
wrap_loc = 0x405C7040
target = 0x401BA018
target_instr_set = Thumb2
custom_stub = halt_hook_thumb2_eq.wrap
CUSTOM_1 = SWI!
CUSTOM_2 = BLX 0x405C7300

[abort_prefetch]
patch_method = pointer
source_loc = 0x40000048
source_instr_set = Thumb2
wrap_loc = 0x405C7080
target = 0x401BA018
target_instr_set = Thumb2
custom_stub = halt_hook_thumb2_eq.wrap
CUSTOM_1 = Abort Prefetch!
CUSTOM_2 = BLX 0x405C7300

[abort_data]
patch_method = pointer
source_loc = 0x4000004C
source_instr_set = Thumb2
wrap_loc = 0x405C70C0
target = 0x401BA018
target_instr_set = Thumb2
custom_stub = halt_hook_thumb2_eq.wrap
CUSTOM_1 = Abort Data!!
CUSTOM_2 = BLX 0x405C7300

heap corruption hook. target is printf function.
wrapper will go to endless loop after calling target.
CUSTOM_2 issues a call to the mask_interrupts function

[pal_free_fail]
patch_method = instruction
source_loc = 0x401BB3C2
source_instr_set = Thumb2
wrap_loc = 0x405C7100
target = 0x401BA018
target_instr_set = Thumb2
custom_stub = halt_hook_thumb2_eq.wrap
CUSTOM_1 = Heap corruption!
CUSTOM_2 = BL 0x401BAC82
 BLX 0x405C7300
force_patch = true

background task hooking - compress from time to time

[background_task]
patch_method = instruction
source_loc = 0x40015C70
source_instr_set = Thumb2
wrap_loc = 0x405C7140
target = 0x405C7300
target_instr_set = ARM
target_binary = compress.bin

function hooks that go to logs!

[strcat]
patch_method = pointer
source_loc = 0x40172548
source_instr_set = Thumb2
wrap_loc = 0x40435B10
target = 0x405C71A0
target_instr_set = ARM
target_binary = logger.bin
custom_stub = strcat.pp

[strcpy]
patch_method = instruction
source_loc = 0x040027B0
source_instr_set = Thumb2
wrap_loc = 0x405C7160
target = 0x405C71A0
target_instr_set = ARM
target_binary = logger.bin
custom_stub = strcpy.ip

[strncpy]
patch_method = instruction
source_loc = 0x402E2054
source_instr_set = ARM
wrap_loc = 0x40435A20
target = 0x405C71A0
target_instr_set = ARM
target_binary = logger.bin
custom_stub = strncpy.ip

[memcpy_1]
patch_method = pointer
source_loc = 0x4017216C
source_instr_set = ARM
wrap_loc = 0x40435A50
target = 0x405C71A0
target_instr_set = ARM
target_binary = logger.bin
custom_stub = memcpy.pp

[memcpy_2]
patch_method = pointer
source_loc = 0x40172218
source_instr_set = ARM
wrap_loc = 0x40435A80
target = 0x405C71A0
target_instr_set = ARM
target_binary = logger.bin
custom_stub = memcpy.pp

[memcpy_3]
patch_method = pointer
source_loc = 0x401725C4
source_instr_set = ARM
wrap_loc = 0x40435AB0
target = 0x405C71A0
target_instr_set = ARM
target_binary = logger.bin
custom_stub = memcpy.pp

[memcpy_4]
patch_method = pointer
source_loc = 0x401725D0
source_instr_set = ARM
wrap_loc = 0x40435AE0
target = 0x405C71A0
target_instr_set = ARM
target_binary = logger.bin
custom_stub = memcpy.pp

function_tracer/host/decompress.c

/*
 * Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <stdio.h>
#include <stdlib.h>

#include "quicklz.h"

qlz_state_decompress state_decompress;

int decompress(char *src, FILE *ofile){
 int *comp_len = (int *)src;
 char *comp = src + 4;

 char *buf = malloc(*comp_len);
 memcpy(buf, comp, *comp_len);

 int len = qlz_size_decompressed(comp);
 char *dst = (char *) malloc(len);

 // decompress and write result
 len = qlz_decompress(comp, dst, &state_decompress);
 fwrite(dst, len, 1, ofile);

 return *comp_len;
}

int main(int argc, char* argv[])
{
 if(argc != 3){
 printf("Usage:\t./decompress DUMP_FILE OUTPUT_FILE\n");
 return 1;
 }

 FILE *ifile, *ofile;
 char *src, *cur;
 int len;

 ifile = fopen(argv[1], "rb");
 ofile = fopen(argv[2], "wb");

 // allocate source buffer
 fseek(ifile, 0, SEEK_END);
 int total_len = ftell(ifile);
 fseek(ifile, 0, SEEK_SET);
 src = (char*) malloc(total_len);
 cur = src;

 // read file and allocate destination buffer
 fread(src, 1, total_len, ifile);

 while(cur - src < total_len){
 // start extracting one by one
 len = decompress(cur, ofile);
 printf("Block size %d bytes @ Offset %d\n", len, cur - src);
 cur += (len & 0xfffffffc) + 4 + 4;
 }

 fclose(ifile);
 fclose(ofile);

 return 0;
}

function_tracer/host/quicklz.h

#ifndef QLZ_HEADER
#define QLZ_HEADER

// Fast data compression library
// Copyright (C) 2006-2011 Lasse Mikkel Reinhold
// lar@quicklz.com
//
// QuickLZ can be used for free under the GPL 1, 2 or 3 license (where anything
// released into public must be open source) or under a commercial license if such
// has been acquired (see http://www.quicklz.com/order.html). The commercial license
// does not cover derived or ported versions created by third parties under GPL.

// You can edit following user settings. Data must be decompressed with the same
// setting of QLZ_COMPRESSION_LEVEL and QLZ_STREAMING_BUFFER as it was compressed
// (see manual). If QLZ_STREAMING_BUFFER > 0, scratch buffers must be initially
// zeroed out (see manual). First #ifndef makes it possible to define settings from
// the outside like the compiler command line.

// 1.5.0 final

#ifndef QLZ_COMPRESSION_LEVEL

	// 1 gives fastest compression speed. 3 gives fastest decompression speed and best
	// compression ratio.
	#define QLZ_COMPRESSION_LEVEL 1
	//#define QLZ_COMPRESSION_LEVEL 2
	//#define QLZ_COMPRESSION_LEVEL 3

	// If > 0, zero out both states prior to first call to qlz_compress() or qlz_decompress()
	// and decompress packets in the same order as they were compressed
	#define QLZ_STREAMING_BUFFER 0
	//#define QLZ_STREAMING_BUFFER 100000
	//#define QLZ_STREAMING_BUFFER 1000000

	// Guarantees that decompression of corrupted data cannot crash. Decreases decompression
	// speed 10-20%. Compression speed not affected.
	//#define QLZ_MEMORY_SAFE
#endif

#define QLZ_VERSION_MAJOR 1
#define QLZ_VERSION_MINOR 5
#define QLZ_VERSION_REVISION 0

// Using size_t, memset() and memcpy()
#include <string.h>

// Verify compression level
#if QLZ_COMPRESSION_LEVEL != 1 && QLZ_COMPRESSION_LEVEL != 2 && QLZ_COMPRESSION_LEVEL != 3
#error QLZ_COMPRESSION_LEVEL must be 1, 2 or 3
#endif

typedef unsigned int ui32;
typedef unsigned short int ui16;

// Decrease QLZ_POINTERS for level 3 to increase compression speed. Do not touch any other values!
#if QLZ_COMPRESSION_LEVEL == 1
#define QLZ_POINTERS 1
#define QLZ_HASH_VALUES 4096
#elif QLZ_COMPRESSION_LEVEL == 2
#define QLZ_POINTERS 4
#define QLZ_HASH_VALUES 2048
#elif QLZ_COMPRESSION_LEVEL == 3
#define QLZ_POINTERS 16
#define QLZ_HASH_VALUES 4096
#endif

// Detect if pointer size is 64-bit. It's not fatal if some 64-bit target is not detected because this is only for adding an optional 64-bit optimization.
#if defined _LP64 || defined __LP64__ || defined __64BIT__ || _ADDR64 || defined _WIN64 || defined __arch64__ || __WORDSIZE == 64 || (defined __sparc && defined __sparcv9) || defined __x86_64 || defined __amd64 || defined __x86_64__ || defined _M_X64 || defined _M_IA64 || defined __ia64 || defined __IA64__
	#define QLZ_PTR_64
#endif

// hash entry
typedef struct
{
#if QLZ_COMPRESSION_LEVEL == 1
	ui32 cache;
#if defined QLZ_PTR_64 && QLZ_STREAMING_BUFFER == 0
	unsigned int offset;
#else
	const unsigned char *offset;
#endif
#else
	const unsigned char *offset[QLZ_POINTERS];
#endif

} qlz_hash_compress;

typedef struct
{
#if QLZ_COMPRESSION_LEVEL == 1
	const unsigned char *offset;
#else
	const unsigned char *offset[QLZ_POINTERS];
#endif
} qlz_hash_decompress;

// states
typedef struct
{
	#if QLZ_STREAMING_BUFFER > 0
		unsigned char stream_buffer[QLZ_STREAMING_BUFFER];
	#endif
	size_t stream_counter;
	qlz_hash_compress hash[QLZ_HASH_VALUES];
	unsigned char hash_counter[QLZ_HASH_VALUES];
} qlz_state_compress;

#if QLZ_COMPRESSION_LEVEL == 1 || QLZ_COMPRESSION_LEVEL == 2
	typedef struct
	{
#if QLZ_STREAMING_BUFFER > 0
		unsigned char stream_buffer[QLZ_STREAMING_BUFFER];
#endif
		qlz_hash_decompress hash[QLZ_HASH_VALUES];
		unsigned char hash_counter[QLZ_HASH_VALUES];
		size_t stream_counter;
	} qlz_state_decompress;
#elif QLZ_COMPRESSION_LEVEL == 3
	typedef struct
	{
#if QLZ_STREAMING_BUFFER > 0
		unsigned char stream_buffer[QLZ_STREAMING_BUFFER];
#endif
#if QLZ_COMPRESSION_LEVEL <= 2
		qlz_hash_decompress hash[QLZ_HASH_VALUES];
#endif
		size_t stream_counter;
	} qlz_state_decompress;
#endif

#if defined (__cplusplus)
extern "C" {
#endif

// Public functions of QuickLZ
size_t qlz_size_decompressed(const char *source);
size_t qlz_size_compressed(const char *source);
size_t qlz_compress(const void *source, char *destination, size_t size, qlz_state_compress *state);
size_t qlz_decompress(const char *source, void *destination, qlz_state_decompress *state);
int qlz_get_setting(int setting);

#if defined (__cplusplus)
}
#endif

#endif

function_tracer/host/analyze.py

#!/usr/bin/python2
#
Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

import struct
import sys

memc_count = 0
stca_count = 0
strc_count = 0
strn_count = 0
entry_count = 0
dump_id = -1
search = ""
search_len = 0

def print_usage():
 print "Usage:\t./analyze.py [-x ID] DECOMPRESSED_DUMP_FILE [FOUR_CHARS_HEX_ENCODED]"

def hex_n_colorize(pl, search):
 color_wrap = "\x1b[01;31m%s\x1b[00m"
 out = ""
 indizes = []

 if search != "":
 start = pl.find(search)
 if start != -1:
 indizes.append(start)

 while start != -1:
 start = pl.find(search, start + 1)
 if start != -1:
 indizes.append(start)

 out = list(pl)
 for i in range(0, len(out)):
 out[i] = out[i].encode("hex")

 for i in indizes:
 if len(out[i]) == 2:
 out[i] = color_wrap % out[i]
 if len(out[i+1]) == 2:
 out[i+1] = color_wrap % out[i+1]
 if len(out[i+2]) == 2:
 out[i+2] = color_wrap % out[i+2]
 if len(out[i+3]) == 2:
 out[i+3] = color_wrap % out[i+3]

 return out

def parse_entry(pl, i, j):
 lr = struct.unpack("<I", pl[i:i+4])[0]
 func = pl[i+4:i+8]
 if func == "memc":
 func = "memcpy"
 global memc_count
 memc_count += 1
 elif func == "stca":
 func = "strcat"
 global stca_count
 stca_count += 1
 elif func == "strc":
 func = "strcpy"
 global strc_count
 strc_count += 1
 else:
 func = "strncpy"
 global strn_count
 strn_count += 1

 global entry_count
 entry_count += 1

 dst = struct.unpack("<I", pl[i+8:i+12])[0]
 src = struct.unpack("<I", pl[i+12:i+16])[0]
 maxsize = struct.unpack("<I", pl[i+16:i+20])[0]

 out = ""

 if func == "strcpy" or func == "strcat":
 out = "ID: %08d\t%s(0x%08x, 0x%08x)\t\tLR: 0x%08x" % (entry_count, func, dst, src, lr)
 else:
 out = "ID: %08d\t%s(0x%08x, 0x%08x, 0x%x)\tLR: 0x%08x" % (entry_count, func, dst, src, maxsize, lr)

 # normal mode - print only headers
 if dump_id == -1:
 if search != "":
 tmp_pl = pl[i+20:j]
 if out.find(search.encode("hex")) != -1 or tmp_pl.find(search) != -1:
 print out
 else:
 print out

 # verbose mode for current selection
 elif dump_id == entry_count:
 print out + "\n\n" + "Hexdump:\n"
 tmp_pl = hex_n_colorize(pl[i+20:j], search)

 for c in xrange(0, len(tmp_pl), 16):
 line = "%08x:\t" % c
 sys.stdout.write(line)

 for cc in tmp_pl[c:c+16]:
 sys.stdout.write(cc + " ")

 sys.stdout.write("\n")

 exit()

if len(sys.argv) < 2:
 print_usage()
 exit()

if sys.argv[1] == "-x":
 if len(sys.argv) < 4:
 print_usage()
 exit()

 dump_id = int(sys.argv[2])
 fname = sys.argv[3]

 if len(sys.argv) == 5:
 search = sys.argv[4].decode("hex")

else:
 fname = sys.argv[1]

 if len(sys.argv) == 3:
 search = sys.argv[2].decode("hex")

indizes =[]

if search != "":
 if len(search) != 4:
 print "FILTER must be exactly 4 chars hex encoded: e.g. 41414141"
 exit()

with open(fname, "rb") as fdin:
 pl = fdin.read()

 # search for function identifiers
 for i in xrange(0, len(pl), 4):
 if pl[i:i+4] == "memc" or pl[i:i+4] == "stca" or pl[i:i+4] == "strc" or pl[i:i+4] == "strn":
 indizes.append(i-4)

 # now parse all identified traces
 for i in range(0, len(indizes)):
 if i+1 == len(indizes):
 parse_entry(pl, indizes[i], None)
 else:
 parse_entry(pl, indizes[i], indizes[i+1])

 # print summary
 print "\n#memcpy: %d\n#strcat: %d\n#strcpy: %d\n#strncpy: %d" % (memc_count, stca_count, strc_count, strn_count)

function_tracer/host/quicklz.c

// Fast data compression library
// Copyright (C) 2006-2011 Lasse Mikkel Reinhold
// lar@quicklz.com
//
// QuickLZ can be used for free under the GPL 1, 2 or 3 license (where anything
// released into public must be open source) or under a commercial license if such
// has been acquired (see http://www.quicklz.com/order.html). The commercial license
// does not cover derived or ported versions created by third parties under GPL.

// 1.5.0 final

#include "quicklz.h"

#if QLZ_VERSION_MAJOR != 1 || QLZ_VERSION_MINOR != 5 || QLZ_VERSION_REVISION != 0
	#error quicklz.c and quicklz.h have different versions
#endif

#if (defined(__X86__) || defined(__i386__) || defined(i386) || defined(_M_IX86) || defined(__386__) || defined(__x86_64__) || defined(_M_X64))
	#define X86X64
#endif

#define MINOFFSET 2
#define UNCONDITIONAL_MATCHLEN 6
#define UNCOMPRESSED_END 4
#define CWORD_LEN 4

#if QLZ_COMPRESSION_LEVEL == 1 && defined QLZ_PTR_64 && QLZ_STREAMING_BUFFER == 0
	#define OFFSET_BASE source
	#define CAST (ui32)(size_t)
#else
	#define OFFSET_BASE 0
	#define CAST
#endif

int qlz_get_setting(int setting)
{
	switch (setting)
	{
		case 0: return QLZ_COMPRESSION_LEVEL;
		case 1: return sizeof(qlz_state_compress);
		case 2: return sizeof(qlz_state_decompress);
		case 3: return QLZ_STREAMING_BUFFER;
#ifdef QLZ_MEMORY_SAFE
		case 6: return 1;
#else
		case 6: return 0;
#endif
		case 7: return QLZ_VERSION_MAJOR;
		case 8: return QLZ_VERSION_MINOR;
		case 9: return QLZ_VERSION_REVISION;
	}
	return -1;
}

#if QLZ_COMPRESSION_LEVEL == 1
static int same(const unsigned char *src, size_t n)
{
	while(n > 0 && *(src + n) == *src)
		n--;
	return n == 0 ? 1 : 0;
}
#endif

static void reset_table_compress(qlz_state_compress *state)
{
	int i;
	for(i = 0; i < QLZ_HASH_VALUES; i++)
	{
#if QLZ_COMPRESSION_LEVEL == 1
		state->hash[i].offset = 0;
#else
		state->hash_counter[i] = 0;
#endif
	}
}

static void reset_table_decompress(qlz_state_decompress *state)
{
	int i;
	(void)state;
	(void)i;
#if QLZ_COMPRESSION_LEVEL == 2
	for(i = 0; i < QLZ_HASH_VALUES; i++)
	{
		state->hash_counter[i] = 0;
	}
#endif
}

static __inline ui32 hash_func(ui32 i)
{
#if QLZ_COMPRESSION_LEVEL == 2
	return ((i >> 9) ^ (i >> 13) ^ i) & (QLZ_HASH_VALUES - 1);
#else
	return ((i >> 12) ^ i) & (QLZ_HASH_VALUES - 1);
#endif
}

static __inline ui32 fast_read(void const *src, ui32 bytes)
{
#ifndef X86X64
	unsigned char *p = (unsigned char*)src;
	switch (bytes)
	{
		case 4:
			return(*p | *(p + 1) << 8 | *(p + 2) << 16 | *(p + 3) << 24);
		case 3:
			return(*p | *(p + 1) << 8 | *(p + 2) << 16);
		case 2:
			return(*p | *(p + 1) << 8);
		case 1:
			return(*p);
	}
	return 0;
#else
	if (bytes >= 1 && bytes <= 4)
		return *((ui32*)src);
	else
		return 0;
#endif
}

static __inline ui32 hashat(const unsigned char *src)
{
	ui32 fetch, hash;
	fetch = fast_read(src, 3);
	hash = hash_func(fetch);
	return hash;
}

static __inline void fast_write(ui32 f, void *dst, size_t bytes)
{
#ifndef X86X64
	unsigned char *p = (unsigned char*)dst;

	switch (bytes)
	{
		case 4:
			*p = (unsigned char)f;
			*(p + 1) = (unsigned char)(f >> 8);
			*(p + 2) = (unsigned char)(f >> 16);
			*(p + 3) = (unsigned char)(f >> 24);
			return;
		case 3:
			*p = (unsigned char)f;
			*(p + 1) = (unsigned char)(f >> 8);
			*(p + 2) = (unsigned char)(f >> 16);
			return;
		case 2:
			*p = (unsigned char)f;
			*(p + 1) = (unsigned char)(f >> 8);
			return;
		case 1:
			*p = (unsigned char)f;
			return;
	}
#else
	switch (bytes)
	{
		case 4:
			((ui32)dst) = f;
			return;
		case 3:
			((ui32)dst) = f;
			return;
		case 2:
			*((ui16 *)dst) = (ui16)f;
			return;
		case 1:
			((unsigned char)dst) = (unsigned char)f;
			return;
	}
#endif
}

size_t qlz_size_decompressed(const char *source)
{
	ui32 n, r;
	n = (((*source) & 2) == 2) ? 4 : 1;
	r = fast_read(source + 1 + n, n);
	r = r & (0xffffffff >> ((4 - n)*8));
	return r;
}

size_t qlz_size_compressed(const char *source)
{
	ui32 n, r;
	n = (((*source) & 2) == 2) ? 4 : 1;
	r = fast_read(source + 1, n);
	r = r & (0xffffffff >> ((4 - n)*8));
	return r;
}

size_t qlz_size_header(const char *source)
{
	size_t n = 2*((((*source) & 2) == 2) ? 4 : 1) + 1;
	return n;
}

static __inline void memcpy_up(unsigned char *dst, const unsigned char *src, ui32 n)
{
	// Caution if modifying memcpy_up! Overlap of dst and src must be special handled.
#ifndef X86X64
	unsigned char *end = dst + n;
	while(dst < end)
	{
		*dst = *src;
		dst++;
		src++;
	}
#else
	ui32 f = 0;
	do
	{
		*(ui32 *)(dst + f) = *(ui32 *)(src + f);
		f += MINOFFSET + 1;
	}
	while (f < n);
#endif
}

static __inline void update_hash(qlz_state_decompress *state, const unsigned char *s)
{
#if QLZ_COMPRESSION_LEVEL == 1
	ui32 hash;
	hash = hashat(s);
	state->hash[hash].offset = s;
	state->hash_counter[hash] = 1;
#elif QLZ_COMPRESSION_LEVEL == 2
	ui32 hash;
	unsigned char c;
	hash = hashat(s);
	c = state->hash_counter[hash];
	state->hash[hash].offset[c & (QLZ_POINTERS - 1)] = s;
	c++;
	state->hash_counter[hash] = c;
#endif
	(void)state;
	(void)s;
}

#if QLZ_COMPRESSION_LEVEL <= 2
static void update_hash_upto(qlz_state_decompress *state, unsigned char **lh, const unsigned char *max)
{
	while(*lh < max)
	{
		(*lh)++;
		update_hash(state, *lh);
	}
}
#endif

static size_t qlz_compress_core(const unsigned char *source, unsigned char *destination, size_t size, qlz_state_compress *state)
{
	const unsigned char *last_byte = source + size - 1;
	const unsigned char *src = source;
	unsigned char *cword_ptr = destination;
	unsigned char *dst = destination + CWORD_LEN;
	ui32 cword_val = 1U << 31;
	const unsigned char *last_matchstart = last_byte - UNCONDITIONAL_MATCHLEN - UNCOMPRESSED_END;
	ui32 fetch = 0;
	unsigned int lits = 0;

	(void) lits;

	if(src <= last_matchstart)
		fetch = fast_read(src, 3);
	
	while(src <= last_matchstart)
	{
		if ((cword_val & 1) == 1)
		{
			// store uncompressed if compression ratio is too low
			if (src > source + (size >> 1) && dst - destination > src - source - ((src - source) >> 5))
				return 0;

			fast_write((cword_val >> 1) | (1U << 31), cword_ptr, CWORD_LEN);

			cword_ptr = dst;
			dst += CWORD_LEN;
			cword_val = 1U << 31;
			fetch = fast_read(src, 3);
		}
#if QLZ_COMPRESSION_LEVEL == 1
		{
			const unsigned char *o;
			ui32 hash, cached;

			hash = hash_func(fetch);
			cached = fetch ^ state->hash[hash].cache;
			state->hash[hash].cache = fetch;

			o = state->hash[hash].offset + OFFSET_BASE;
			state->hash[hash].offset = CAST(src - OFFSET_BASE);

#ifdef X86X64
			if ((cached & 0xffffff) == 0 && o != OFFSET_BASE && (src - o > MINOFFSET || (src == o + 1 && lits >= 3 && src > source + 3 && same(src - 3, 6))))
			{
				if(cached != 0)
				{
#else
			if (cached == 0 && o != OFFSET_BASE && (src - o > MINOFFSET || (src == o + 1 && lits >= 3 && src > source + 3 && same(src - 3, 6))))
			{
				if (*(o + 3) != *(src + 3))
				{
#endif
					hash <<= 4;
					cword_val = (cword_val >> 1) | (1U << 31);
					fast_write((3 - 2) | hash, dst, 2);
					src += 3;
					dst += 2;
				}
				else
				{
					const unsigned char *old_src = src;
					size_t matchlen;
					hash <<= 4;

					cword_val = (cword_val >> 1) | (1U << 31);
					src += 4;

					if(*(o + (src - old_src)) == *src)
					{
						src++;
						if(*(o + (src - old_src)) == *src)
						{
							size_t q = last_byte - UNCOMPRESSED_END - (src - 5) + 1;
							size_t remaining = q > 255 ? 255 : q;
							src++;	
							while(*(o + (src - old_src)) == *src && (size_t)(src - old_src) < remaining)
								src++;
						}
					}

					matchlen = src - old_src;
					if (matchlen < 18)
					{
						fast_write((ui32)(matchlen - 2) | hash, dst, 2);
						dst += 2;
					}
					else
					{
						fast_write((ui32)(matchlen << 16) | hash, dst, 3);
						dst += 3;
					}
				}
				fetch = fast_read(src, 3);
				lits = 0;
			}
			else
			{
				lits++;
				*dst = *src;
				src++;
				dst++;
				cword_val = (cword_val >> 1);
#ifdef X86X64
				fetch = fast_read(src, 3);
#else
				fetch = (fetch >> 8 & 0xffff) | (*(src + 2) << 16);
#endif
			}
		}
#elif QLZ_COMPRESSION_LEVEL >= 2
		{
			const unsigned char *o, *offset2;
			ui32 hash, matchlen, k, m, best_k = 0;
			unsigned char c;
			size_t remaining = (last_byte - UNCOMPRESSED_END - src + 1) > 255 ? 255 : (last_byte - UNCOMPRESSED_END - src + 1);
			(void)best_k;
		

			//hash = hashat(src);
			fetch = fast_read(src, 3);
			hash = hash_func(fetch);

			c = state->hash_counter[hash];

			offset2 = state->hash[hash].offset[0];
			if(offset2 < src - MINOFFSET && c > 0 && ((fast_read(offset2, 3) ^ fetch) & 0xffffff) == 0)
			{	
				matchlen = 3;
				if(*(offset2 + matchlen) == *(src + matchlen))
				{
					matchlen = 4;
					while(*(offset2 + matchlen) == *(src + matchlen) && matchlen < remaining)
						matchlen++;
				}
			}
			else
				matchlen = 0;
			for(k = 1; k < QLZ_POINTERS && c > k; k++)
			{
				o = state->hash[hash].offset[k];
#if QLZ_COMPRESSION_LEVEL == 3
				if(((fast_read(o, 3) ^ fetch) & 0xffffff) == 0 && o < src - MINOFFSET)
#elif QLZ_COMPRESSION_LEVEL == 2
				if(*(src + matchlen) == *(o + matchlen)	&& ((fast_read(o, 3) ^ fetch) & 0xffffff) == 0 && o < src - MINOFFSET)
#endif
				{	
					m = 3;
					while(*(o + m) == *(src + m) && m < remaining)
						m++;
#if QLZ_COMPRESSION_LEVEL == 3
					if ((m > matchlen) || (m == matchlen && o > offset2))
#elif QLZ_COMPRESSION_LEVEL == 2
					if (m > matchlen)
#endif
					{
						offset2 = o;
						matchlen = m;
						best_k = k;
					}
				}
			}
			o = offset2;
			state->hash[hash].offset[c & (QLZ_POINTERS - 1)] = src;
			c++;
			state->hash_counter[hash] = c;

#if QLZ_COMPRESSION_LEVEL == 3
			if(matchlen > 2 && src - o < 131071)
			{
				ui32 u;
				size_t offset = src - o;

				for(u = 1; u < matchlen; u++)
				{	
					hash = hashat(src + u);
					c = state->hash_counter[hash]++;
					state->hash[hash].offset[c & (QLZ_POINTERS - 1)] = src + u;
				}

				cword_val = (cword_val >> 1) | (1U << 31);
				src += matchlen;

				if(matchlen == 3 && offset <= 63)
				{
					*dst = (unsigned char)(offset << 2);
					dst++;
				}
				else if (matchlen == 3 && offset <= 16383)
				{
					ui32 f = (ui32)((offset << 2) | 1);
					fast_write(f, dst, 2);
					dst += 2;
				}		
				else if (matchlen <= 18 && offset <= 1023)
				{
					ui32 f = ((matchlen - 3) << 2) | ((ui32)offset << 6) | 2;
					fast_write(f, dst, 2);
					dst += 2;
				}

				else if(matchlen <= 33)
				{
					ui32 f = ((matchlen - 2) << 2) | ((ui32)offset << 7) | 3;
					fast_write(f, dst, 3);
					dst += 3;
				}
				else
				{
					ui32 f = ((matchlen - 3) << 7) | ((ui32)offset << 15) | 3;
					fast_write(f, dst, 4);
					dst += 4;
				}
			}
			else
			{
				*dst = *src;
				src++;
				dst++;
				cword_val = (cword_val >> 1);
			}
#elif QLZ_COMPRESSION_LEVEL == 2

			if(matchlen > 2)
			{
				cword_val = (cword_val >> 1) | (1U << 31);
				src += matchlen;			

				if (matchlen < 10)
				{			
					ui32 f = best_k | ((matchlen - 2) << 2) | (hash << 5);
					fast_write(f, dst, 2);
					dst += 2;
				}
				else
				{
					ui32 f = best_k | (matchlen << 16) | (hash << 5);
					fast_write(f, dst, 3);
					dst += 3;
				}
			}
			else
			{
				*dst = *src;
				src++;
				dst++;
				cword_val = (cword_val >> 1);
			}
#endif
		}
#endif
	}
	while (src <= last_byte)
	{
		if ((cword_val & 1) == 1)
		{
			fast_write((cword_val >> 1) | (1U << 31), cword_ptr, CWORD_LEN);
			cword_ptr = dst;
			dst += CWORD_LEN;
			cword_val = 1U << 31;
		}
#if QLZ_COMPRESSION_LEVEL < 3
		if (src <= last_byte - 3)
		{
#if QLZ_COMPRESSION_LEVEL == 1
			ui32 hash, fetch;
			fetch = fast_read(src, 3);
			hash = hash_func(fetch);
			state->hash[hash].offset = CAST(src - OFFSET_BASE);
			state->hash[hash].cache = fetch;
#elif QLZ_COMPRESSION_LEVEL == 2
			ui32 hash;
			unsigned char c;
			hash = hashat(src);
			c = state->hash_counter[hash];
			state->hash[hash].offset[c & (QLZ_POINTERS - 1)] = src;
			c++;
			state->hash_counter[hash] = c;
#endif
		}
#endif
		*dst = *src;
		src++;
		dst++;
		cword_val = (cword_val >> 1);
	}

	while((cword_val & 1) != 1)
		cword_val = (cword_val >> 1);

	fast_write((cword_val >> 1) | (1U << 31), cword_ptr, CWORD_LEN);

	// min. size must be 9 bytes so that the qlz_size functions can take 9 bytes as argument
	return dst - destination < 9 ? 9 : dst - destination;
}

static size_t qlz_decompress_core(const unsigned char *source, unsigned char *destination, size_t size, qlz_state_decompress *state, const unsigned char *history)
{
	const unsigned char *src = source + qlz_size_header((const char *)source);
	unsigned char *dst = destination;
	const unsigned char *last_destination_byte = destination + size - 1;
	ui32 cword_val = 1;
	const unsigned char *last_matchstart = last_destination_byte - UNCONDITIONAL_MATCHLEN - UNCOMPRESSED_END;
	unsigned char *last_hashed = destination - 1;
	const unsigned char *last_source_byte = source + qlz_size_compressed((const char *)source) - 1;
	static const ui32 bitlut[16] = {4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};

	(void) last_source_byte;
	(void) last_hashed;
	(void) state;
	(void) history;

	for(;;)
	{
		ui32 fetch;

		if (cword_val == 1)
		{
#ifdef QLZ_MEMORY_SAFE
			if(src + CWORD_LEN - 1 > last_source_byte)
				return 0;
#endif
			cword_val = fast_read(src, CWORD_LEN);
			src += CWORD_LEN;
		}

#ifdef QLZ_MEMORY_SAFE
			if(src + 4 - 1 > last_source_byte)
				return 0;
#endif

		fetch = fast_read(src, 4);

		if ((cword_val & 1) == 1)
		{
			ui32 matchlen;
			const unsigned char *offset2;

#if QLZ_COMPRESSION_LEVEL == 1
			ui32 hash;
			cword_val = cword_val >> 1;
			hash = (fetch >> 4) & 0xfff;
			offset2 = (const unsigned char *)(size_t)state->hash[hash].offset;

			if((fetch & 0xf) != 0)
			{
				matchlen = (fetch & 0xf) + 2;
				src += 2;
			}
			else
			{
				matchlen = *(src + 2);
				src += 3;							
			}	

#elif QLZ_COMPRESSION_LEVEL == 2
			ui32 hash;
			unsigned char c;
			cword_val = cword_val >> 1;
			hash = (fetch >> 5) & 0x7ff;
			c = (unsigned char)(fetch & 0x3);
			offset2 = state->hash[hash].offset[c];

			if((fetch & (28)) != 0)
			{
				matchlen = ((fetch >> 2) & 0x7) + 2;
				src += 2;
			}
			else
			{
				matchlen = *(src + 2);
				src += 3;							
			}	

#elif QLZ_COMPRESSION_LEVEL == 3
			ui32 offset;
			cword_val = cword_val >> 1;
			if ((fetch & 3) == 0)
			{
				offset = (fetch & 0xff) >> 2;
				matchlen = 3;
				src++;
			}
			else if ((fetch & 2) == 0)
			{
				offset = (fetch & 0xffff) >> 2;
				matchlen = 3;
				src += 2;
			}
			else if ((fetch & 1) == 0)
			{
				offset = (fetch & 0xffff) >> 6;
				matchlen = ((fetch >> 2) & 15) + 3;
				src += 2;
			}
			else if ((fetch & 127) != 3)
			{
				offset = (fetch >> 7) & 0x1ffff;
				matchlen = ((fetch >> 2) & 0x1f) + 2;
				src += 3;
			}
			else
			{
				offset = (fetch >> 15);
				matchlen = ((fetch >> 7) & 255) + 3;
				src += 4;
			}

			offset2 = dst - offset;
#endif
	
#ifdef QLZ_MEMORY_SAFE
			if(offset2 < history || offset2 > dst - MINOFFSET - 1)
				return 0;

			if(matchlen > (ui32)(last_destination_byte - dst - UNCOMPRESSED_END + 1))
				return 0;
#endif

			memcpy_up(dst, offset2, matchlen);
			dst += matchlen;

#if QLZ_COMPRESSION_LEVEL <= 2
			update_hash_upto(state, &last_hashed, dst - matchlen);
			last_hashed = dst - 1;
#endif
		}
		else
		{
			if (dst < last_matchstart)
			{
				unsigned int n = bitlut[cword_val & 0xf];
#ifdef X86X64
				*(ui32 *)dst = *(ui32 *)src;
#else
				memcpy_up(dst, src, 4);
#endif
				cword_val = cword_val >> n;
				dst += n;
				src += n;
#if QLZ_COMPRESSION_LEVEL <= 2
				update_hash_upto(state, &last_hashed, dst - 3);		
#endif
			}
			else
			{			
				while(dst <= last_destination_byte)
				{
					if (cword_val == 1)
					{
						src += CWORD_LEN;
						cword_val = 1U << 31;
					}
#ifdef QLZ_MEMORY_SAFE
					if(src >= last_source_byte + 1)
						return 0;
#endif
					*dst = *src;
					dst++;
					src++;
					cword_val = cword_val >> 1;
				}

#if QLZ_COMPRESSION_LEVEL <= 2
				update_hash_upto(state, &last_hashed, last_destination_byte - 3); // todo, use constant
#endif
				return size;
			}

		}
	}
}

size_t qlz_compress(const void *source, char *destination, size_t size, qlz_state_compress *state)
{
	size_t r;
	ui32 compressed;
	size_t base;

	if(size == 0 || size > 0xffffffff - 400)
		return 0;

	if(size < 216)
		base = 3;
	else
		base = 9;

#if QLZ_STREAMING_BUFFER > 0
	if (state->stream_counter + size - 1 >= QLZ_STREAMING_BUFFER)
#endif
	{
		reset_table_compress(state);
		r = base + qlz_compress_core((const unsigned char *)source, (unsigned char*)destination + base, size, state);
#if QLZ_STREAMING_BUFFER > 0
		reset_table_compress(state);
#endif
		if(r == base)
		{
			memcpy(destination + base, source, size);
			r = size + base;
			compressed = 0;
		}
		else
		{
			compressed = 1;
		}
		state->stream_counter = 0;
	}
#if QLZ_STREAMING_BUFFER > 0
	else
	{
		unsigned char *src = state->stream_buffer + state->stream_counter;

		memcpy(src, source, size);
		r = base + qlz_compress_core(src, (unsigned char*)destination + base, size, state);

 		if(r == base)
		{
			memcpy(destination + base, src, size);
			r = size + base;
			compressed = 0;
			reset_table_compress(state);
		}
		else
		{
			compressed = 1;
		}
		state->stream_counter += size;
	}
#endif
	if(base == 3)
	{
		*destination = (unsigned char)(0 | compressed);
		*(destination + 1) = (unsigned char)r;
		*(destination + 2) = (unsigned char)size;
	}
	else
	{
		*destination = (unsigned char)(2 | compressed);
		fast_write((ui32)r, destination + 1, 4);
		fast_write((ui32)size, destination + 5, 4);
	}
	
	*destination |= (QLZ_COMPRESSION_LEVEL << 2);
	*destination |= (1 << 6);
	*destination |= ((QLZ_STREAMING_BUFFER == 0 ? 0 : (QLZ_STREAMING_BUFFER == 100000 ? 1 : (QLZ_STREAMING_BUFFER == 1000000 ? 2 : 3))) << 4);

// 76543210
// 01SSLLHC

	return r;
}

size_t qlz_decompress(const char *source, void *destination, qlz_state_decompress *state)
{
	size_t dsiz = qlz_size_decompressed(source);

#if QLZ_STREAMING_BUFFER > 0
	if (state->stream_counter + qlz_size_decompressed(source) - 1 >= QLZ_STREAMING_BUFFER)
#endif
	{
		if((*source & 1) == 1)
		{
			reset_table_decompress(state);
			dsiz = qlz_decompress_core((const unsigned char *)source, (unsigned char *)destination, dsiz, state, (const unsigned char *)destination);
		}
		else
		{
			memcpy(destination, source + qlz_size_header(source), dsiz);
		}
		state->stream_counter = 0;
		reset_table_decompress(state);
	}
#if QLZ_STREAMING_BUFFER > 0
	else
	{
		unsigned char *dst = state->stream_buffer + state->stream_counter;
		if((*source & 1) == 1)
		{
			dsiz = qlz_decompress_core((const unsigned char *)source, dst, dsiz, state, (const unsigned char *)state->stream_buffer);
		}
		else
		{
			memcpy(dst, source + qlz_size_header(source), dsiz);
			reset_table_decompress(state);
		}
		memcpy(destination, dst, dsiz);
		state->stream_counter += dsiz;
	}
#endif
	return dsiz;
}

function_tracer/host/receiver.py

#!/usr/bin/python2
#
Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

import serial
import struct
import sys

chunksize needs to be same value in ../device/includes/config.h
chunksize = 256

def download():
	size = struct.unpack("<I", ser.read(4))[0]
	print "$> Going to download %d bytes" % size
	done = 0
	
	with open(filename, "wb") as fdout:
		for i in xrange(0, size - (size % chunksize), chunksize):
			fdout.write(ser.read(chunksize))
			done += chunksize
			print "$> %d bytes done" % done
			ser.write("K")
			
		fdout.write(ser.read(size % chunksize))
		print "$> All done"
		ser.write("K")		

if len(sys.argv) != 3:
	print "Usage:\t./receiver.py SERIAL_DEV DUMP_FILE"
	exit()

ser = serial.Serial()
ser.port = sys.argv[1]
ser.baudrate = 115200
filename = sys.argv[2]

try:
 ser.open()

except Exception, e:
 print "Couldn't open serial port" + str(e)
 exit()

if ser.isOpen():
 try:
 ser.flushInput()
 ser.flushOutput()

 while True:
 response = ser.readline()
 if response == "DOWNLOAD_START\r\n":
				download()
 else:
				sys.stdout.write(response)
			
 ser.close()

 except Exception, e1:
 print "Something's wrong...: " + str(e1)

else:
 print "Can't open serial port"

function_tracer/host/README.txt

Function tracing routine, designed for Samsung GT-B3740.
Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This folder contains scripts and binaries to help analyze the compressed content created by the injectected function tracing routine:

- receiver.py: listens on a serial connection and prints out messages received. When downloading marker is received, the compressed logfile is retrieved automatically.
- decompress utility: used to un-quicklz the logfile retrieved by receiver.py.
- analyze.py: analyzes the contents of the logged function traces. the previously decompressed file is used as input.

Compile decompress with:
gcc -o decompress decompress.c quicklz.c

function_tracer/device/README.txt

Function tracing routine, designed for Samsung GT-B3740.
Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

Before compiling:
- check includes/config.h and adjust (if necessary) the values
- check includes/functions.h for valid function pointers
- verify that there exists (or create if not) a function that can be used to dump the logfile (send_byte_uart)

Notes:
- the compressing routine is designed to automatically init downloading if the routine is called with masked interrupts (this lets halting hooks trigger download automatically)

Compile and link functions:
arm-none-eabi-gcc -nostdinc -nostdlib --entry=main -fno-common -fPIC -fPIE -fomit-frame-pointer -o compress.o -mcpu=cortex-r4 -Wno-overflow -Ofast -Iincludes compress.c dumper.c quicklz.c
arm-none-eabi-gcc -nostdinc -nostdlib --entry=main -fno-common -fPIC -fPIE -fomit-frame-pointer -o logger.o -mcpu=cortex-r4 -Wno-overflow -Ofast -Iincludes logger.c
arm-none-eabi-as -o custom_uart.o -mthumb -EL custom_uart.asm
arm-none-eabi-ld -EL -Ttext=0x40435900 -o custom_uart.elf custom_uart.o

And convert to flat binary:
arm-none-eabi-objcopy --set-section-flags .bss=alloc,load,contents -O binary compress.o compress.bin
arm-none-eabi-objcopy --set-section-flags .bss=alloc,load,contents -O binary logger.o logger.bin
arm-none-eabi-objcopy -O binary custom_uart.elf custom_uart.bin

function_tracer/device/includes/config.h

/*
 * Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Global variables that either need "holes" in firmware or unused part of RAM
 */

#define LOG_FLAG 0x404358EC // holds flag that enables or disables logging. choose a place that is zero initially or add manual instructions to clear on start
#define FINAL_BUF_START 0x40600000 // pointer to the start of final_buf (not mallocced, unsused part of RAM)
#define FINAL_BUF_END 0x41000000 // pointer to the end of final_buf (not mallocced, unsused part of RAM)
#define FINAL_BUF_TOP 0x404358F0 // holds pointer to the top of final_buf
#define TEMP_BUF 0x404358F4 // holds pointer to the start of temp_buf (temp_buf gets mallocced). choose a place that is zero initially or add manual instructions to clear on start
#define TEMP_BUF_TOP 0x404358E8 // holds pointer to the top of temp_buf

/*
 * Global definitions
 */

#define CHUNKSIZE 256 // CHUNKSIZE needs to be same value in ../../host/receiver.py
#define TEMP_BUF_SIZE 1048576 // size of buffer that holds temporary, uncompressed log entries
#define THRESHOLD 20480 // above what size (of temp_buf) will we start compressing

function_tracer/device/includes/functions.h

/*
 * Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Function pointers for SAMSUNG GT-B3740 device
 * Firmware B3740BUKA2
 */

#define malloc ((malloc_fn)0x401725D4)
#define memclr ((memclr_fn)0x401725B8)
#define memcpy ((memcpy_fn)0x04002728)
#define memset ((memset_fn)0x04002610)
#define printf ((printf_fn)0x401BA019)
#define send_byte_uart ((send_byte_uart_fn)0x00000490)
#define strlen ((strlen_fn)0x401B9E8D)
#define uart_rx ((uart_rx_fn)0x00000460)

/* send_byte_uart_fn accepts three arguments in order to trigger saving of R0-R2
 * registers. technically, only one argument would be sufficient, but the called
 * code does not save these registers, thus messing up the dumper code.
 */

typedef int (*malloc_fn)(int, int);
typedef void (*memclr_fn)(int, int);
typedef void (*memcpy_fn)(int, int, int);
typedef void (*memset_fn)(int, char, int);
typedef int (*printf_fn)(const char *, ...);
typedef void (*send_byte_uart_fn)(unsigned char, int, int);
typedef int (*strlen_fn)(int);
typedef unsigned char (*uart_rx_fn)(void);

typedef unsigned int size_t;

function_tracer/device/includes/quicklz.h

#ifndef QLZ_HEADER
#define QLZ_HEADER

// Fast data compression library
// Copyright (C) 2006-2011 Lasse Mikkel Reinhold
// lar@quicklz.com
//
// QuickLZ can be used for free under the GPL 1, 2 or 3 license (where anything
// released into public must be open source) or under a commercial license if such
// has been acquired (see http://www.quicklz.com/order.html). The commercial license
// does not cover derived or ported versions created by third parties under GPL.

// You can edit following user settings. Data must be decompressed with the same
// setting of QLZ_COMPRESSION_LEVEL and QLZ_STREAMING_BUFFER as it was compressed
// (see manual). If QLZ_STREAMING_BUFFER > 0, scratch buffers must be initially
// zeroed out (see manual). First #ifndef makes it possible to define settings from
// the outside like the compiler command line.

// 1.5.0 final

#ifndef QLZ_COMPRESSION_LEVEL

	// 1 gives fastest compression speed. 3 gives fastest decompression speed and best
	// compression ratio.
	#define QLZ_COMPRESSION_LEVEL 1
	//#define QLZ_COMPRESSION_LEVEL 2
	//#define QLZ_COMPRESSION_LEVEL 3

	// If > 0, zero out both states prior to first call to qlz_compress() or qlz_decompress()
	// and decompress packets in the same order as they were compressed
	#define QLZ_STREAMING_BUFFER 0
	//#define QLZ_STREAMING_BUFFER 100000
	//#define QLZ_STREAMING_BUFFER 1000000

	// Guarantees that decompression of corrupted data cannot crash. Decreases decompression
	// speed 10-20%. Compression speed not affected.
	//#define QLZ_MEMORY_SAFE
#endif

#define QLZ_VERSION_MAJOR 1
#define QLZ_VERSION_MINOR 5
#define QLZ_VERSION_REVISION 0

// Using size_t, memset() and memcpy()
#include <functions.h>

// Verify compression level
#if QLZ_COMPRESSION_LEVEL != 1 && QLZ_COMPRESSION_LEVEL != 2 && QLZ_COMPRESSION_LEVEL != 3
#error QLZ_COMPRESSION_LEVEL must be 1, 2 or 3
#endif

typedef unsigned int ui32;
typedef unsigned short int ui16;

// Decrease QLZ_POINTERS for level 3 to increase compression speed. Do not touch any other values!
#if QLZ_COMPRESSION_LEVEL == 1
#define QLZ_POINTERS 1
#define QLZ_HASH_VALUES 4096
#elif QLZ_COMPRESSION_LEVEL == 2
#define QLZ_POINTERS 4
#define QLZ_HASH_VALUES 2048
#elif QLZ_COMPRESSION_LEVEL == 3
#define QLZ_POINTERS 16
#define QLZ_HASH_VALUES 4096
#endif

// Detect if pointer size is 64-bit. It's not fatal if some 64-bit target is not detected because this is only for adding an optional 64-bit optimization.
#if defined _LP64 || defined __LP64__ || defined __64BIT__ || _ADDR64 || defined _WIN64 || defined __arch64__ || __WORDSIZE == 64 || (defined __sparc && defined __sparcv9) || defined __x86_64 || defined __amd64 || defined __x86_64__ || defined _M_X64 || defined _M_IA64 || defined __ia64 || defined __IA64__
	#define QLZ_PTR_64
#endif

// hash entry
typedef struct
{
#if QLZ_COMPRESSION_LEVEL == 1
	ui32 cache;
#if defined QLZ_PTR_64 && QLZ_STREAMING_BUFFER == 0
	unsigned int offset;
#else
	const unsigned char *offset;
#endif
#else
	const unsigned char *offset[QLZ_POINTERS];
#endif

} qlz_hash_compress;

typedef struct
{
#if QLZ_COMPRESSION_LEVEL == 1
	const unsigned char *offset;
#else
	const unsigned char *offset[QLZ_POINTERS];
#endif
} qlz_hash_decompress;

// states
typedef struct
{
	#if QLZ_STREAMING_BUFFER > 0
		unsigned char stream_buffer[QLZ_STREAMING_BUFFER];
	#endif
	size_t stream_counter;
	qlz_hash_compress hash[QLZ_HASH_VALUES];
	unsigned char hash_counter[QLZ_HASH_VALUES];
} qlz_state_compress;

#if QLZ_COMPRESSION_LEVEL == 1 || QLZ_COMPRESSION_LEVEL == 2
	typedef struct
	{
#if QLZ_STREAMING_BUFFER > 0
		unsigned char stream_buffer[QLZ_STREAMING_BUFFER];
#endif
		qlz_hash_decompress hash[QLZ_HASH_VALUES];
		unsigned char hash_counter[QLZ_HASH_VALUES];
		size_t stream_counter;
	} qlz_state_decompress;
#elif QLZ_COMPRESSION_LEVEL == 3
	typedef struct
	{
#if QLZ_STREAMING_BUFFER > 0
		unsigned char stream_buffer[QLZ_STREAMING_BUFFER];
#endif
#if QLZ_COMPRESSION_LEVEL <= 2
		qlz_hash_decompress hash[QLZ_HASH_VALUES];
#endif
		size_t stream_counter;
	} qlz_state_decompress;
#endif

#if defined (__cplusplus)
extern "C" {
#endif

// Public functions of QuickLZ
size_t qlz_size_decompressed(const char *source);
size_t qlz_size_compressed(const char *source);
size_t qlz_compress(const void *source, char *destination, size_t size, qlz_state_compress *state);
size_t qlz_decompress(const char *source, void *destination, qlz_state_decompress *state);
int qlz_get_setting(int setting);

#if defined (__cplusplus)
}
#endif

#endif

function_tracer/device/includes/dumper.h

/*
 * Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <config.h>
#include <functions.h>

void dump_to_uart(unsigned char *buf, int size);

function_tracer/device/compress.c

/*
 * Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <config.h>
#include <functions.h>
#include <dumper.h>
#include <quicklz.h>

qlz_state_compress state_compress;

void main(){
 int* final_buf_top = (int *)FINAL_BUF_TOP;
 int* log_flag = (int *)LOG_FLAG;
 int* temp_buf_top = (int *)TEMP_BUF_TOP;
 int* temp_buf = (int *)TEMP_BUF;

 // supervisor mode, mask interrupts if necessary
 int cpsr = 0;
 int masked = 0;
 asm volatile ("MRS %0, CPSR" : "=r" (cpsr));

 if((cpsr & 0xc0) != 0)
 masked = 1;
 if(!masked)
 asm volatile ("msr CPSR_c, #0xD3");

 if(*log_flag == 0x0 || *log_flag == 0x1){
 if(*temp_buf == 0x0){
 *temp_buf = malloc(1, TEMP_BUF_SIZE);
 *temp_buf_top = *temp_buf;
 *final_buf_top = FINAL_BUF_START;

 // clear buffer
 memclr(*temp_buf, TEMP_BUF_SIZE);
 memclr(FINAL_BUF_START, FINAL_BUF_END - FINAL_BUF_START);

 // enable logging
 *log_flag = 0x1;
 }else{
 // temporarily disable logging (prevent endless recursion)
 *log_flag = 0x0;

 int size = *temp_buf_top - *temp_buf;

 // if interrupts were masked we assume that the call comes from a halting hoook - therefore compress and start dumping!
 if(size > THRESHOLD || masked){
 if((*final_buf_top) + size + 4 < FINAL_BUF_END){
 int *top_pointer = (int *)(*final_buf_top);

 // compress buffer
 int size2 = qlz_compress((void *)(*temp_buf), (unsigned char*)(top_pointer + 1), size, &state_compress);

 // store size
 *top_pointer = size2;

 // update final_buf_top pointer
 *final_buf_top += (size2 & 0xfffffffc) + 4 + 4;

 // clear buffer
 memclr(*temp_buf, size);

 printf("$> %d bytes -> %d bytes, total: %d bytes\n", size, size2, (*final_buf_top) - FINAL_BUF_START);

 // reset buffer
 *temp_buf_top = *temp_buf;

 // if interrupts were masked we assume that the call comes from a halting hoook
 if(masked)
 dump_to_uart((unsigned char *)FINAL_BUF_START, (*final_buf_top) - FINAL_BUF_START);

 }else{
 printf("$> Storage Full!\n");
 dump_to_uart((unsigned char *)FINAL_BUF_START, (*final_buf_top) - FINAL_BUF_START);
 while(1)
 asm volatile ("NOP");
 }
 }

 // reenable logging
 *log_flag = 0x1;
 }
 }

 // supervisor mode, unmask interrupts if necessary
 if(!masked)
 asm volatile ("msr CPSR_c, #0x13");
}

function_tracer/device/custom_uart.asm

Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

.syntax unified // Thumb2 Mode!

.section .text

 PUSH {LR}
 LDR R3, =0x404358F8 // disable uart output flag
 LDR R3, [R3]
 CMP R3, #0x0
 BNE _ret

 MOV	 R3, R0
 CMP	 R0, #0xA
 BNE _end

 MOV	 R0, #0xD
 MOV	 R1, #0x490 // UART char sending routine
 BLX	 R1

_end:
 MOV		R0, R3
 MOV		R1, #0x490
 BLX		R1

_ret:
 POP		{PC}

function_tracer/device/quicklz.c

// Fast data compression library
// Copyright (C) 2006-2011 Lasse Mikkel Reinhold
// lar@quicklz.com
//
// QuickLZ can be used for free under the GPL 1, 2 or 3 license (where anything
// released into public must be open source) or under a commercial license if such
// has been acquired (see http://www.quicklz.com/order.html). The commercial license
// does not cover derived or ported versions created by third parties under GPL.

// 1.5.0 final

#include "quicklz.h"

#if QLZ_VERSION_MAJOR != 1 || QLZ_VERSION_MINOR != 5 || QLZ_VERSION_REVISION != 0
	#error quicklz.c and quicklz.h have different versions
#endif

#if (defined(__X86__) || defined(__i386__) || defined(i386) || defined(_M_IX86) || defined(__386__) || defined(__x86_64__) || defined(_M_X64))
	#define X86X64
#endif

#define MINOFFSET 2
#define UNCONDITIONAL_MATCHLEN 6
#define UNCOMPRESSED_END 4
#define CWORD_LEN 4

#if QLZ_COMPRESSION_LEVEL == 1 && defined QLZ_PTR_64 && QLZ_STREAMING_BUFFER == 0
	#define OFFSET_BASE source
	#define CAST (ui32)(size_t)
#else
	#define OFFSET_BASE 0
	#define CAST
#endif

int qlz_get_setting(int setting)
{
	switch (setting)
	{
		case 0: return QLZ_COMPRESSION_LEVEL;
		case 1: return sizeof(qlz_state_compress);
		case 2: return sizeof(qlz_state_decompress);
		case 3: return QLZ_STREAMING_BUFFER;
#ifdef QLZ_MEMORY_SAFE
		case 6: return 1;
#else
		case 6: return 0;
#endif
		case 7: return QLZ_VERSION_MAJOR;
		case 8: return QLZ_VERSION_MINOR;
		case 9: return QLZ_VERSION_REVISION;
	}
	return -1;
}

#if QLZ_COMPRESSION_LEVEL == 1
static int same(const unsigned char *src, size_t n)
{
	while(n > 0 && *(src + n) == *src)
		n--;
	return n == 0 ? 1 : 0;
}
#endif

static void reset_table_compress(qlz_state_compress *state)
{
	int i;
	for(i = 0; i < QLZ_HASH_VALUES; i++)
	{
#if QLZ_COMPRESSION_LEVEL == 1
		state->hash[i].offset = 0;
#else
		state->hash_counter[i] = 0;
#endif
	}
}

static void reset_table_decompress(qlz_state_decompress *state)
{
	int i;
	(void)state;
	(void)i;
#if QLZ_COMPRESSION_LEVEL == 2
	for(i = 0; i < QLZ_HASH_VALUES; i++)
	{
		state->hash_counter[i] = 0;
	}
#endif
}

static __inline ui32 hash_func(ui32 i)
{
#if QLZ_COMPRESSION_LEVEL == 2
	return ((i >> 9) ^ (i >> 13) ^ i) & (QLZ_HASH_VALUES - 1);
#else
	return ((i >> 12) ^ i) & (QLZ_HASH_VALUES - 1);
#endif
}

static __inline ui32 fast_read(void const *src, ui32 bytes)
{
#ifndef X86X64
	unsigned char *p = (unsigned char*)src;
	switch (bytes)
	{
		case 4:
			return(*p | *(p + 1) << 8 | *(p + 2) << 16 | *(p + 3) << 24);
		case 3:
			return(*p | *(p + 1) << 8 | *(p + 2) << 16);
		case 2:
			return(*p | *(p + 1) << 8);
		case 1:
			return(*p);
	}
	return 0;
#else
	if (bytes >= 1 && bytes <= 4)
		return *((ui32*)src);
	else
		return 0;
#endif
}

static __inline ui32 hashat(const unsigned char *src)
{
	ui32 fetch, hash;
	fetch = fast_read(src, 3);
	hash = hash_func(fetch);
	return hash;
}

static __inline void fast_write(ui32 f, void *dst, size_t bytes)
{
#ifndef X86X64
	unsigned char *p = (unsigned char*)dst;

	switch (bytes)
	{
		case 4:
			*p = (unsigned char)f;
			*(p + 1) = (unsigned char)(f >> 8);
			*(p + 2) = (unsigned char)(f >> 16);
			*(p + 3) = (unsigned char)(f >> 24);
			return;
		case 3:
			*p = (unsigned char)f;
			*(p + 1) = (unsigned char)(f >> 8);
			*(p + 2) = (unsigned char)(f >> 16);
			return;
		case 2:
			*p = (unsigned char)f;
			*(p + 1) = (unsigned char)(f >> 8);
			return;
		case 1:
			*p = (unsigned char)f;
			return;
	}
#else
	switch (bytes)
	{
		case 4:
			((ui32)dst) = f;
			return;
		case 3:
			((ui32)dst) = f;
			return;
		case 2:
			*((ui16 *)dst) = (ui16)f;
			return;
		case 1:
			((unsigned char)dst) = (unsigned char)f;
			return;
	}
#endif
}

size_t qlz_size_decompressed(const char *source)
{
	ui32 n, r;
	n = (((*source) & 2) == 2) ? 4 : 1;
	r = fast_read(source + 1 + n, n);
	r = r & (0xffffffff >> ((4 - n)*8));
	return r;
}

size_t qlz_size_compressed(const char *source)
{
	ui32 n, r;
	n = (((*source) & 2) == 2) ? 4 : 1;
	r = fast_read(source + 1, n);
	r = r & (0xffffffff >> ((4 - n)*8));
	return r;
}

size_t qlz_size_header(const char *source)
{
	size_t n = 2*((((*source) & 2) == 2) ? 4 : 1) + 1;
	return n;
}

static __inline void memcpy_up(unsigned char *dst, const unsigned char *src, ui32 n)
{
	// Caution if modifying memcpy_up! Overlap of dst and src must be special handled.
#ifndef X86X64
	unsigned char *end = dst + n;
	while(dst < end)
	{
		*dst = *src;
		dst++;
		src++;
	}
#else
	ui32 f = 0;
	do
	{
		*(ui32 *)(dst + f) = *(ui32 *)(src + f);
		f += MINOFFSET + 1;
	}
	while (f < n);
#endif
}

static __inline void update_hash(qlz_state_decompress *state, const unsigned char *s)
{
#if QLZ_COMPRESSION_LEVEL == 1
	ui32 hash;
	hash = hashat(s);
	state->hash[hash].offset = s;
	state->hash_counter[hash] = 1;
#elif QLZ_COMPRESSION_LEVEL == 2
	ui32 hash;
	unsigned char c;
	hash = hashat(s);
	c = state->hash_counter[hash];
	state->hash[hash].offset[c & (QLZ_POINTERS - 1)] = s;
	c++;
	state->hash_counter[hash] = c;
#endif
	(void)state;
	(void)s;
}

#if QLZ_COMPRESSION_LEVEL <= 2
static void update_hash_upto(qlz_state_decompress *state, unsigned char **lh, const unsigned char *max)
{
	while(*lh < max)
	{
		(*lh)++;
		update_hash(state, *lh);
	}
}
#endif

static size_t qlz_compress_core(const unsigned char *source, unsigned char *destination, size_t size, qlz_state_compress *state)
{
	const unsigned char *last_byte = source + size - 1;
	const unsigned char *src = source;
	unsigned char *cword_ptr = destination;
	unsigned char *dst = destination + CWORD_LEN;
	ui32 cword_val = 1U << 31;
	const unsigned char *last_matchstart = last_byte - UNCONDITIONAL_MATCHLEN - UNCOMPRESSED_END;
	ui32 fetch = 0;
	unsigned int lits = 0;

	(void) lits;

	if(src <= last_matchstart)
		fetch = fast_read(src, 3);
	
	while(src <= last_matchstart)
	{
		if ((cword_val & 1) == 1)
		{
			// store uncompressed if compression ratio is too low
			if (src > source + (size >> 1) && dst - destination > src - source - ((src - source) >> 5))
				return 0;

			fast_write((cword_val >> 1) | (1U << 31), cword_ptr, CWORD_LEN);

			cword_ptr = dst;
			dst += CWORD_LEN;
			cword_val = 1U << 31;
			fetch = fast_read(src, 3);
		}
#if QLZ_COMPRESSION_LEVEL == 1
		{
			const unsigned char *o;
			ui32 hash, cached;

			hash = hash_func(fetch);
			cached = fetch ^ state->hash[hash].cache;
			state->hash[hash].cache = fetch;

			o = state->hash[hash].offset + OFFSET_BASE;
			state->hash[hash].offset = CAST(src - OFFSET_BASE);

#ifdef X86X64
			if ((cached & 0xffffff) == 0 && o != OFFSET_BASE && (src - o > MINOFFSET || (src == o + 1 && lits >= 3 && src > source + 3 && same(src - 3, 6))))
			{
				if(cached != 0)
				{
#else
			if (cached == 0 && o != OFFSET_BASE && (src - o > MINOFFSET || (src == o + 1 && lits >= 3 && src > source + 3 && same(src - 3, 6))))
			{
				if (*(o + 3) != *(src + 3))
				{
#endif
					hash <<= 4;
					cword_val = (cword_val >> 1) | (1U << 31);
					fast_write((3 - 2) | hash, dst, 2);
					src += 3;
					dst += 2;
				}
				else
				{
					const unsigned char *old_src = src;
					size_t matchlen;
					hash <<= 4;

					cword_val = (cword_val >> 1) | (1U << 31);
					src += 4;

					if(*(o + (src - old_src)) == *src)
					{
						src++;
						if(*(o + (src - old_src)) == *src)
						{
							size_t q = last_byte - UNCOMPRESSED_END - (src - 5) + 1;
							size_t remaining = q > 255 ? 255 : q;
							src++;	
							while(*(o + (src - old_src)) == *src && (size_t)(src - old_src) < remaining)
								src++;
						}
					}

					matchlen = src - old_src;
					if (matchlen < 18)
					{
						fast_write((ui32)(matchlen - 2) | hash, dst, 2);
						dst += 2;
					}
					else
					{
						fast_write((ui32)(matchlen << 16) | hash, dst, 3);
						dst += 3;
					}
				}
				fetch = fast_read(src, 3);
				lits = 0;
			}
			else
			{
				lits++;
				*dst = *src;
				src++;
				dst++;
				cword_val = (cword_val >> 1);
#ifdef X86X64
				fetch = fast_read(src, 3);
#else
				fetch = (fetch >> 8 & 0xffff) | (*(src + 2) << 16);
#endif
			}
		}
#elif QLZ_COMPRESSION_LEVEL >= 2
		{
			const unsigned char *o, *offset2;
			ui32 hash, matchlen, k, m, best_k = 0;
			unsigned char c;
			size_t remaining = (last_byte - UNCOMPRESSED_END - src + 1) > 255 ? 255 : (last_byte - UNCOMPRESSED_END - src + 1);
			(void)best_k;
		

			//hash = hashat(src);
			fetch = fast_read(src, 3);
			hash = hash_func(fetch);

			c = state->hash_counter[hash];

			offset2 = state->hash[hash].offset[0];
			if(offset2 < src - MINOFFSET && c > 0 && ((fast_read(offset2, 3) ^ fetch) & 0xffffff) == 0)
			{	
				matchlen = 3;
				if(*(offset2 + matchlen) == *(src + matchlen))
				{
					matchlen = 4;
					while(*(offset2 + matchlen) == *(src + matchlen) && matchlen < remaining)
						matchlen++;
				}
			}
			else
				matchlen = 0;
			for(k = 1; k < QLZ_POINTERS && c > k; k++)
			{
				o = state->hash[hash].offset[k];
#if QLZ_COMPRESSION_LEVEL == 3
				if(((fast_read(o, 3) ^ fetch) & 0xffffff) == 0 && o < src - MINOFFSET)
#elif QLZ_COMPRESSION_LEVEL == 2
				if(*(src + matchlen) == *(o + matchlen)	&& ((fast_read(o, 3) ^ fetch) & 0xffffff) == 0 && o < src - MINOFFSET)
#endif
				{	
					m = 3;
					while(*(o + m) == *(src + m) && m < remaining)
						m++;
#if QLZ_COMPRESSION_LEVEL == 3
					if ((m > matchlen) || (m == matchlen && o > offset2))
#elif QLZ_COMPRESSION_LEVEL == 2
					if (m > matchlen)
#endif
					{
						offset2 = o;
						matchlen = m;
						best_k = k;
					}
				}
			}
			o = offset2;
			state->hash[hash].offset[c & (QLZ_POINTERS - 1)] = src;
			c++;
			state->hash_counter[hash] = c;

#if QLZ_COMPRESSION_LEVEL == 3
			if(matchlen > 2 && src - o < 131071)
			{
				ui32 u;
				size_t offset = src - o;

				for(u = 1; u < matchlen; u++)
				{	
					hash = hashat(src + u);
					c = state->hash_counter[hash]++;
					state->hash[hash].offset[c & (QLZ_POINTERS - 1)] = src + u;
				}

				cword_val = (cword_val >> 1) | (1U << 31);
				src += matchlen;

				if(matchlen == 3 && offset <= 63)
				{
					*dst = (unsigned char)(offset << 2);
					dst++;
				}
				else if (matchlen == 3 && offset <= 16383)
				{
					ui32 f = (ui32)((offset << 2) | 1);
					fast_write(f, dst, 2);
					dst += 2;
				}		
				else if (matchlen <= 18 && offset <= 1023)
				{
					ui32 f = ((matchlen - 3) << 2) | ((ui32)offset << 6) | 2;
					fast_write(f, dst, 2);
					dst += 2;
				}

				else if(matchlen <= 33)
				{
					ui32 f = ((matchlen - 2) << 2) | ((ui32)offset << 7) | 3;
					fast_write(f, dst, 3);
					dst += 3;
				}
				else
				{
					ui32 f = ((matchlen - 3) << 7) | ((ui32)offset << 15) | 3;
					fast_write(f, dst, 4);
					dst += 4;
				}
			}
			else
			{
				*dst = *src;
				src++;
				dst++;
				cword_val = (cword_val >> 1);
			}
#elif QLZ_COMPRESSION_LEVEL == 2

			if(matchlen > 2)
			{
				cword_val = (cword_val >> 1) | (1U << 31);
				src += matchlen;			

				if (matchlen < 10)
				{			
					ui32 f = best_k | ((matchlen - 2) << 2) | (hash << 5);
					fast_write(f, dst, 2);
					dst += 2;
				}
				else
				{
					ui32 f = best_k | (matchlen << 16) | (hash << 5);
					fast_write(f, dst, 3);
					dst += 3;
				}
			}
			else
			{
				*dst = *src;
				src++;
				dst++;
				cword_val = (cword_val >> 1);
			}
#endif
		}
#endif
	}
	while (src <= last_byte)
	{
		if ((cword_val & 1) == 1)
		{
			fast_write((cword_val >> 1) | (1U << 31), cword_ptr, CWORD_LEN);
			cword_ptr = dst;
			dst += CWORD_LEN;
			cword_val = 1U << 31;
		}
#if QLZ_COMPRESSION_LEVEL < 3
		if (src <= last_byte - 3)
		{
#if QLZ_COMPRESSION_LEVEL == 1
			ui32 hash, fetch;
			fetch = fast_read(src, 3);
			hash = hash_func(fetch);
			state->hash[hash].offset = CAST(src - OFFSET_BASE);
			state->hash[hash].cache = fetch;
#elif QLZ_COMPRESSION_LEVEL == 2
			ui32 hash;
			unsigned char c;
			hash = hashat(src);
			c = state->hash_counter[hash];
			state->hash[hash].offset[c & (QLZ_POINTERS - 1)] = src;
			c++;
			state->hash_counter[hash] = c;
#endif
		}
#endif
		*dst = *src;
		src++;
		dst++;
		cword_val = (cword_val >> 1);
	}

	while((cword_val & 1) != 1)
		cword_val = (cword_val >> 1);

	fast_write((cword_val >> 1) | (1U << 31), cword_ptr, CWORD_LEN);

	// min. size must be 9 bytes so that the qlz_size functions can take 9 bytes as argument
	return dst - destination < 9 ? 9 : dst - destination;
}

static size_t qlz_decompress_core(const unsigned char *source, unsigned char *destination, size_t size, qlz_state_decompress *state, const unsigned char *history)
{
	const unsigned char *src = source + qlz_size_header((const char *)source);
	unsigned char *dst = destination;
	const unsigned char *last_destination_byte = destination + size - 1;
	ui32 cword_val = 1;
	const unsigned char *last_matchstart = last_destination_byte - UNCONDITIONAL_MATCHLEN - UNCOMPRESSED_END;
	unsigned char *last_hashed = destination - 1;
	const unsigned char *last_source_byte = source + qlz_size_compressed((const char *)source) - 1;
	static const ui32 bitlut[16] = {4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};

	(void) last_source_byte;
	(void) last_hashed;
	(void) state;
	(void) history;

	for(;;)
	{
		ui32 fetch;

		if (cword_val == 1)
		{
#ifdef QLZ_MEMORY_SAFE
			if(src + CWORD_LEN - 1 > last_source_byte)
				return 0;
#endif
			cword_val = fast_read(src, CWORD_LEN);
			src += CWORD_LEN;
		}

#ifdef QLZ_MEMORY_SAFE
			if(src + 4 - 1 > last_source_byte)
				return 0;
#endif

		fetch = fast_read(src, 4);

		if ((cword_val & 1) == 1)
		{
			ui32 matchlen;
			const unsigned char *offset2;

#if QLZ_COMPRESSION_LEVEL == 1
			ui32 hash;
			cword_val = cword_val >> 1;
			hash = (fetch >> 4) & 0xfff;
			offset2 = (const unsigned char *)(size_t)state->hash[hash].offset;

			if((fetch & 0xf) != 0)
			{
				matchlen = (fetch & 0xf) + 2;
				src += 2;
			}
			else
			{
				matchlen = *(src + 2);
				src += 3;							
			}	

#elif QLZ_COMPRESSION_LEVEL == 2
			ui32 hash;
			unsigned char c;
			cword_val = cword_val >> 1;
			hash = (fetch >> 5) & 0x7ff;
			c = (unsigned char)(fetch & 0x3);
			offset2 = state->hash[hash].offset[c];

			if((fetch & (28)) != 0)
			{
				matchlen = ((fetch >> 2) & 0x7) + 2;
				src += 2;
			}
			else
			{
				matchlen = *(src + 2);
				src += 3;							
			}	

#elif QLZ_COMPRESSION_LEVEL == 3
			ui32 offset;
			cword_val = cword_val >> 1;
			if ((fetch & 3) == 0)
			{
				offset = (fetch & 0xff) >> 2;
				matchlen = 3;
				src++;
			}
			else if ((fetch & 2) == 0)
			{
				offset = (fetch & 0xffff) >> 2;
				matchlen = 3;
				src += 2;
			}
			else if ((fetch & 1) == 0)
			{
				offset = (fetch & 0xffff) >> 6;
				matchlen = ((fetch >> 2) & 15) + 3;
				src += 2;
			}
			else if ((fetch & 127) != 3)
			{
				offset = (fetch >> 7) & 0x1ffff;
				matchlen = ((fetch >> 2) & 0x1f) + 2;
				src += 3;
			}
			else
			{
				offset = (fetch >> 15);
				matchlen = ((fetch >> 7) & 255) + 3;
				src += 4;
			}

			offset2 = dst - offset;
#endif
	
#ifdef QLZ_MEMORY_SAFE
			if(offset2 < history || offset2 > dst - MINOFFSET - 1)
				return 0;

			if(matchlen > (ui32)(last_destination_byte - dst - UNCOMPRESSED_END + 1))
				return 0;
#endif

			memcpy_up(dst, offset2, matchlen);
			dst += matchlen;

#if QLZ_COMPRESSION_LEVEL <= 2
			update_hash_upto(state, &last_hashed, dst - matchlen);
			last_hashed = dst - 1;
#endif
		}
		else
		{
			if (dst < last_matchstart)
			{
				unsigned int n = bitlut[cword_val & 0xf];
#ifdef X86X64
				*(ui32 *)dst = *(ui32 *)src;
#else
				memcpy_up(dst, src, 4);
#endif
				cword_val = cword_val >> n;
				dst += n;
				src += n;
#if QLZ_COMPRESSION_LEVEL <= 2
				update_hash_upto(state, &last_hashed, dst - 3);		
#endif
			}
			else
			{			
				while(dst <= last_destination_byte)
				{
					if (cword_val == 1)
					{
						src += CWORD_LEN;
						cword_val = 1U << 31;
					}
#ifdef QLZ_MEMORY_SAFE
					if(src >= last_source_byte + 1)
						return 0;
#endif
					*dst = *src;
					dst++;
					src++;
					cword_val = cword_val >> 1;
				}

#if QLZ_COMPRESSION_LEVEL <= 2
				update_hash_upto(state, &last_hashed, last_destination_byte - 3); // todo, use constant
#endif
				return size;
			}

		}
	}
}

size_t qlz_compress(const void *source, char *destination, size_t size, qlz_state_compress *state)
{
	size_t r;
	ui32 compressed;
	size_t base;

	if(size == 0 || size > 0xffffffff - 400)
		return 0;

	if(size < 216)
		base = 3;
	else
		base = 9;

#if QLZ_STREAMING_BUFFER > 0
	if (state->stream_counter + size - 1 >= QLZ_STREAMING_BUFFER)
#endif
	{
		reset_table_compress(state);
		r = base + qlz_compress_core((const unsigned char *)source, (unsigned char*)destination + base, size, state);
#if QLZ_STREAMING_BUFFER > 0
		reset_table_compress(state);
#endif
		if(r == base)
		{
			memcpy((int)destination + base, (int)source, (int)size);
			r = size + base;
			compressed = 0;
		}
		else
		{
			compressed = 1;
		}
		state->stream_counter = 0;
	}
#if QLZ_STREAMING_BUFFER > 0
	else
	{
		unsigned char *src = state->stream_buffer + state->stream_counter;

		memcpy(src, source, size);
		r = base + qlz_compress_core(src, (unsigned char*)destination + base, size, state);

 		if(r == base)
		{
			memcpy(destination + base, src, size);
			r = size + base;
			compressed = 0;
			reset_table_compress(state);
		}
		else
		{
			compressed = 1;
		}
		state->stream_counter += size;
	}
#endif
	if(base == 3)
	{
		*destination = (unsigned char)(0 | compressed);
		*(destination + 1) = (unsigned char)r;
		*(destination + 2) = (unsigned char)size;
	}
	else
	{
		*destination = (unsigned char)(2 | compressed);
		fast_write((ui32)r, destination + 1, 4);
		fast_write((ui32)size, destination + 5, 4);
	}
	
	*destination |= (QLZ_COMPRESSION_LEVEL << 2);
	*destination |= (1 << 6);
	*destination |= ((QLZ_STREAMING_BUFFER == 0 ? 0 : (QLZ_STREAMING_BUFFER == 100000 ? 1 : (QLZ_STREAMING_BUFFER == 1000000 ? 2 : 3))) << 4);

// 76543210
// 01SSLLHC

	return r;
}

size_t qlz_decompress(const char *source, void *destination, qlz_state_decompress *state)
{
	size_t dsiz = qlz_size_decompressed(source);

#if QLZ_STREAMING_BUFFER > 0
	if (state->stream_counter + qlz_size_decompressed(source) - 1 >= QLZ_STREAMING_BUFFER)
#endif
	{
		if((*source & 1) == 1)
		{
			reset_table_decompress(state);
			dsiz = qlz_decompress_core((const unsigned char *)source, (unsigned char *)destination, dsiz, state, (const unsigned char *)destination);
		}
		else
		{
			memcpy((int)destination, (int)(source + qlz_size_header(source)), (int)dsiz);
		}
		state->stream_counter = 0;
		reset_table_decompress(state);
	}
#if QLZ_STREAMING_BUFFER > 0
	else
	{
		unsigned char *dst = state->stream_buffer + state->stream_counter;
		if((*source & 1) == 1)
		{
			dsiz = qlz_decompress_core((const unsigned char *)source, dst, dsiz, state, (const unsigned char *)state->stream_buffer);
		}
		else
		{
			memcpy(dst, source + qlz_size_header(source), dsiz);
			reset_table_decompress(state);
		}
		memcpy(destination, dst, dsiz);
		state->stream_counter += dsiz;
	}
#endif
	return dsiz;
}

function_tracer/device/dumper.c

/*
 * Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <dumper.h>

void dump_to_uart(unsigned char *buf, int size){
 int i, j;

 printf("\nDOWNLOAD_START\n");

 // first send size
 for(i = 0; i < 4; i++){
 send_byte_uart((unsigned char)*((unsigned char *)(&size) + i), 0, 0);
 }

 // transmit first in CHUNKSIZE
 for(i = 0; i < size - (size % CHUNKSIZE); i += CHUNKSIZE){
 for(j = 0; j < CHUNKSIZE; j++){
 send_byte_uart(*buf, 0, 0);
 buf++;
 }

 while(uart_rx() != 'K')
 asm volatile ("NOP");
 }

 for(i = 0; i < size % CHUNKSIZE; i++){
 send_byte_uart(*buf, 0, 0);
 buf++;
 }

 while(uart_rx() != 'K')
 asm volatile ("NOP");

 printf("Download Done!\n");
}

function_tracer/device/logger.c

/*
 * Copyright (C) 2014 Christoph Knecht <hisr@hisr.ch>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Output Structure:
 *
 * 0-3: lr
 * 4-7: type
 * 8-11: dest
 * 12-15: src
 * 16-19: size
 * content
 *
 */

#include <config.h>
#include <functions.h>

void main(int dest, int src, int maxsize, int type, int lr){
 int* log_flag = (int *)LOG_FLAG;
 int* temp_buf_top = (int *)TEMP_BUF_TOP;
 int* temp_buf = (int *)TEMP_BUF;

 // supervisor mode, mask interrupts if necessary
 int cpsr = 0;
 int masked = 0;
 asm volatile ("MRS %0, CPSR" : "=r" (cpsr));

 if((cpsr & 0xc0) != 0)
 masked = 1;
 if(!masked)
 asm volatile ("msr CPSR_c, #0xD3");

 if(*log_flag == 0x1){
 // disable logging, prevent endless recursion
 *log_flag == 0x0;
 int size = maxsize;

 // if strcat or strcpy or strncpy determine length first
 if(type == 0x61637473 || type == 0x63727473 || type == 0x6e727473){
 size = strlen(src);
 }

 int totalsize = 20 + (size & 0xfffffffc) + 4;
 int *tmp = (int *)(*temp_buf_top);

 if(*temp_buf_top + totalsize < *temp_buf + 0x100000){
 // copy LR
 *tmp = lr;
 tmp++;

 // copy type
 *tmp = type;
 tmp++;

 // copy dest
 *tmp = dest;
 tmp++;

 // copy src
 *tmp = src;
 tmp++;

 // copy maxsize
 *tmp = maxsize;
 tmp++;

 // copy content
 memcpy((int)tmp, src, size);

 // AAATODOO: log disasble temporär?? süsch blöd mit memcpy?? wäg hooking uso

 // update temp_buf_top
 *temp_buf_top += totalsize;
 }else{
 printf("FULL!\n");
 }

 // reenable logging
 *log_flag == 0x1;
 }

 // supervisor mode, unmask interrupts if necessary
 if(!masked)
 asm volatile ("msr CPSR_c, #0x13");
}

LICENSE

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

